1(a)
Prove the following:
\[\dfrac{1}{1- \dfrac{1}{1-\dfrac{1}{1-\cos h^2x}}} = \cos h^2 x\]
\[\dfrac{1}{1- \dfrac{1}{1-\dfrac{1}{1-\cos h^2x}}} = \cos h^2 x\]
3 M
1(b)
If u = log (tanx + tany)
\[2x\dfrac{\partial u}{\partial x}+sin2y\dfrac{\partial u}{\partial y} = 2 \]
\[2x\dfrac{\partial u}{\partial x}+sin2y\dfrac{\partial u}{\partial y} = 2 \]
3 M
1(c)
If the following expression is true,
\[ u=\dfrac{x+y}{1-xy} \ \ , \ v = tan^{-1}x + tna^{-1}y \\ Find \ \ \dfrac{\partial (u,v)}{\partial (x,y)}\]
\[ u=\dfrac{x+y}{1-xy} \ \ , \ v = tan^{-1}x + tna^{-1}y \\ Find \ \ \dfrac{\partial (u,v)}{\partial (x,y)}\]
3 M
1(d)
Expand log (1+sinx) = (x - x2/2 + x3/6 +...)
3 M
1(e)
Show that every square matrix can be uniquely expressed as P+iQ where P and Q are Hermitian Matrices.
4 M
1(f)
Find nth order derivative of
\[y= \dfrac{x^2+4}{(2x+3)(x-1)^2}\]
\[y= \dfrac{x^2+4}{(2x+3)(x-1)^2}\]
4 M
2(a)
Show that roots of the equation (x+1)6 + (x-1)6 = 0 are given by
\[-i\cot\Big[ \dfrac{(2k+1)\pi}{12} \Big] \ \ \ , \ k=0,1,2,3,4,5\]
\[-i\cot\Big[ \dfrac{(2k+1)\pi}{12} \Big] \ \ \ , \ k=0,1,2,3,4,5\]
6 M
2(b)
Reduce the following matrix into normal form and find its rank
\[ \left[ {\begin{array}{cc} 2 & -1 & 1 & 1\\ 1 & 0 & 1 & 2\\ 3 & 3 & 3 & 1\\ 0 & -4 & -1 & 2\\ \end{array} } \right]\]
\[ \left[ {\begin{array}{cc} 2 & -1 & 1 & 1\\ 1 & 0 & 1 & 2\\ 3 & 3 & 3 & 1\\ 0 & -4 & -1 & 2\\ \end{array} } \right]\]
6 M
2(c)
State and prove Euler's theorem for a homogeneous function in two variables. And hence
\[Find \ \ x \dfrac{\partial u}{\partial x}+ y\dfrac{\partial u}{\partial y} \ \ where \ u=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\]
\[Find \ \ x \dfrac{\partial u}{\partial x}+ y\dfrac{\partial u}{\partial y} \ \ where \ u=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\]
8 M
3(a)
Test for consistency and solve if consistent -
x1-2x2+x3-x4=2;
x1+2x2+2x4=1;
4x2-x3+3x4=-1.
x1-2x2+x3-x4=2;
x1+2x2+2x4=1;
4x2-x3+3x4=-1.
6 M
3(b)
Find all stationary value of x2 + 3xy - 15x2 - 15y2 + 72x.
6 M
3(c)
If tan[(π/4)+iv] = reiθ show that
(i) r=1
(ii) tanθ = sinh 2v
(iii) tanhv = tan(θ/2)
(i) r=1
(ii) tanθ = sinh 2v
(iii) tanhv = tan(θ/2)
8 M
4(a)
If x = u+e(-v)sin u, and y = v+e(-u)cos u,
\[Find \ \ \dfrac{\partial u}{\partial y}, \dfrac{\partial v}{\partial x} \ \ using \ \ Jacobian\]
\[Find \ \ \dfrac{\partial u}{\partial y}, \dfrac{\partial v}{\partial x} \ \ using \ \ Jacobian\]
6 M
4(b)
Considering only the principal value,
if (1 + i tanθ)(1+i tanθ) is real, prove that its value is (sec?)(sec2θ).
if (1 + i tanθ)(1+i tanθ) is real, prove that its value is (sec?)(sec2θ).
6 M
4(c)
Solve the system of linear equation by Crout's method
x - y + 2z = 2;
3x + 2y - 3z = 2;
4x - 4y + 2z = 2
x - y + 2z = 2;
3x + 2y - 3z = 2;
4x - 4y + 2z = 2
8 M
5(a)
Expand cos7θ in a series of cosines of multiple of θ .
6 M
5(b)
Evaluate the following:
\[\displaystyle\lim_{x \to 0}\Big[ \dfrac{1}{x^2} - cot^2x \Big]\]
\[\displaystyle\lim_{x \to 0}\Big[ \dfrac{1}{x^2} - cot^2x \Big]\]
6 M
5(c)
If y = (sin-1x)2, obtain yn(0).
8 M
6(a)
Show that the vectors are linearly dependent and find the relation between them
X1=[1,2,-1,0],
X2=[1,3,1,2],
X3=[4,2,1,0],
X4=[6,1,0,1].
X1=[1,2,-1,0],
X2=[1,3,1,2],
X3=[4,2,1,0],
X4=[6,1,0,1].
6 M
6(b)
If the expression is
\[\dfrac{x^2}{(1+u)}+\dfrac{y^2}{(2+u)} +\dfrac{z^2}{(3=1+u)} \]
prove that
\[\Big[\Big(\dfrac{\partial u}{\partial x}\Big)^2+ \Big(\dfrac{\partial u}{\partial y}\Big)^2 +\Big(\dfrac{\partial u}{\partial z}\Big)^2 \Big] = 2\Big[x\dfrac{\partial u}{\partial x}+ y\dfrac{\partial u}{\partial y} +z\dfrac{\partial u}{\partial z} \Big]\]
\[\dfrac{x^2}{(1+u)}+\dfrac{y^2}{(2+u)} +\dfrac{z^2}{(3=1+u)} \]
prove that
\[\Big[\Big(\dfrac{\partial u}{\partial x}\Big)^2+ \Big(\dfrac{\partial u}{\partial y}\Big)^2 +\Big(\dfrac{\partial u}{\partial z}\Big)^2 \Big] = 2\Big[x\dfrac{\partial u}{\partial x}+ y\dfrac{\partial u}{\partial y} +z\dfrac{\partial u}{\partial z} \Big]\]
6 M
6(c)
Fit a second degree parabolic curve to following data:-
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Y | 2 | 6 | 7 | 8 | 10 | 11 | 11 | 10 | 9 |
8 M
More question papers from Applied Mathematics 1