MU First Year Engineering (Semester 1)
Applied Mathematics 1
December 2011
Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


1(a) If arg(z+1) = π/6 and arg(z-1) = 2π/3 find z, a complex number.
5 M
1(b) Prove that tanh-1 (sinθ) = cosh-1 (secθ)
5 M
1(c) Prove that real part of (1+i3)(1+l3) is 2eπ/3 cos(π3+3log2)
5 M
1(d) Test the convergence of
x1.2+x23.4+x35.6+x47.8+......(x>0, x1)
5 M

2(a) If b+ic = (1+a)z and a2 + b2 + c2 = 1 then
Prove that=a+ib1+c=1+iz1iz
6 M
2(b) Find the roots α, α2, α34 of the equation x5 - 1 = 0 and show that
(1-α)(1-α2)(1-α3)(1-α4) = 5
6 M
2(c) If u=f(e(y-z),e(z-x),e(x-y)) then
Prove that=ux+uy+uz=0
8 M

3(a) Prove that arg z1 - arg z2 = π/2 if
|z1 + z2 |= |z1 - z2 | where z2 , z1 are complex numbers.
6 M
3(b) Prove that αn + βn = 2cos n θ cosecn θ
if α and β roots of the equation
z2sin2 θ - z sin2θ + 1 = 0 .
6 M
3(c) Show the following:
tan1i(xax+a)=i2log(xa)
8 M

4(a) Prove the following:
x2y(n+2) + (2n+1)xy(n+1) + 2n2 yn = 0
if   cos1(yb)=log(xn)n
6 M
4(b) If z = tan(y+ax) + (y-ax)(3/2)
2zx2=a22zy2
6 M
4(c) If the given function, f(xy2,z - 2x) = 0, thenprove that
2xzyyzy=4x
8 M

5(a) Separate into real and imaginary parts
cos-1(3i/4).
6 M
5(b) Prove the following:
xux=yuy=zuz=0    if   u=f(xy,yz,zx)
6 M
5(c) Examine the function
f(x,y) = y2 + 4xy + 3x2 + x3 for extreme values.
8 M

6(a) Find x, if a = xi + 12j - k; b = 2i + 2j + k; c = i + k are coplanar. Also find unit vector in the direction of a
6 M
6(b) Prove the following:
log sec x=[x22+x412+x645...]
6 M
6(c) Evaluate the following:
limx  0 exsinxxx2x2+xlog(1x)
8 M

7(a) If f(x,y) = 0 and ϕ(y,z) = 0 then prove that
fy.φz.dzdx=fx.φy
6 M
7(b) Find (1.04)3.01 by using theory of approximation.
6 M
7(c) Prove the following:
[b¯×a¯   a¯×c¯   a¯×b¯]=[a¯  b¯  c¯]2
8 M



More question papers from Applied Mathematics 1
SPONSORED ADVERTISEMENTS