1(a)
If arg(z+1) = π/6 and arg(z-1) = 2π/3 find z, a complex number.
5 M
1(b)
Prove that tanh-1 (sinθ) = cosh-1 (secθ)
5 M
1(c)
Prove that real part of
5 M
1(d)
Test the convergence of
5 M
2(a)
If b+ic = (1+a)z and a2 + b2 + c2 = 1 then
6 M
2(b)
Find the roots α, α2, α3,α4 of the equation x5 - 1 = 0 and show that
(1-α)(1-α2)(1-α3)(1-α4) = 5
(1-α)(1-α2)(1-α3)(1-α4) = 5
6 M
2(c)
If u=f(e(y-z),e(z-x),e(x-y)) then
8 M
3(a)
Prove that arg z1 - arg z2 = π/2 if
|z1 + z2 |= |z1 - z2 | where z2 , z1 are complex numbers.
|z1 + z2 |= |z1 - z2 | where z2 , z1 are complex numbers.
6 M
3(b)
Prove that αn + βn = 2cos n θ cosecn θ
if α and β roots of the equation
z2sin2 θ - z sin2θ + 1 = 0 .
if α and β roots of the equation
z2sin2 θ - z sin2θ + 1 = 0 .
6 M
3(c)
Show the following:
8 M
4(a)
Prove the following:
x2y(n+2) + (2n+1)xy(n+1) + 2n2 yn = 0
x2y(n+2) + (2n+1)xy(n+1) + 2n2 yn = 0
6 M
4(b)
If z = tan(y+ax) + (y-ax)(3/2)
6 M
4(c)
If the given function, f(xy2,z - 2x) = 0, thenprove that
8 M
5(a)
Separate into real and imaginary parts
cos-1(3i/4).
cos-1(3i/4).
6 M
5(b)
Prove the following:
6 M
5(c)
Examine the function
f(x,y) = y2 + 4xy + 3x2 + x3 for extreme values.
f(x,y) = y2 + 4xy + 3x2 + x3 for extreme values.
8 M
6(a)
Find x, if a = xi + 12j - k; b = 2i + 2j + k; c = i + k are coplanar. Also find unit vector in the direction of a
6 M
6(b)
Prove the following:
6 M
6(c)
Evaluate the following:
8 M
7(a)
If f(x,y) = 0 and ϕ(y,z) = 0 then prove that
6 M
7(b)
Find (1.04)3.01 by using theory of approximation.
6 M
7(c)
Prove the following:
8 M
More question papers from Applied Mathematics 1