MU First Year Engineering (Semester 1)
Applied Mathematics 1
May 2012
Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


1 (a) If Args(z+1)=π6 & Args(z1)=2π3 find z.
5 M
1 (b) Find nth derivative of 2x⋅ sin2x ⋅cos3x.
5 M
1 (c) Expand f(x)=x43x2+2x2x+1 in power of (x-3).
5 M
1 (d) Show that limx(11/x+21/x+31/x+41/x4)4x=24
5 M

2 (a) If z=log(x2+y2)+x2+y2x+y2log(x+y),prove that xzx+yzy=x2+y2x+y
7 M
2 (b) If f(x), ∅(x), φ(x) are differentiable in [a,b], show that there exist a value c in (a,b) such that |f(a)(a)φ(a)f(b)(b)φ(b)f(c)(c)φ(c)|=0
6 M
2 (c) If tan(α+iβ)=eiθ, prove that 1) α=nπ2+π4 , and 2) β=12logtan(π4+θ2).
7 M

3 (a) show that(1eiθ)12(1eiθ)12=(1cosec(θ2))12
7 M
3 (b) If f(x)=1x2 and g(x)=1x  then show that c of C.M.V.T. is H.M of a & b where a>0, b>0.
6 M
3 (c) if y=sin[log(x2+2x+1)] then prove that (x+1)2yn+2(2n+1)(x+1)yn+1+(n2+4)yn=0.
7 M

4 (a) Solve x6x5+x4x3+x2x+1=0.
7 M
4 (b) If u=1x+my, v=mx-1y, prove that 1] (ux)y(xu)V=I2I2+m2
2]  (yv)x(vy)u=I2+m2I2
6 M
4 (c) Show thatF¯=(y2z2+3yz2x)i+(3xz+2xy)i+(3xy2xz+2z)k is both solenoidal and irrotational.
7 M

5 (a) prove that tan7θ=7tanθ35tan3θ+21tan5θtan7θ121tan2θ+35tan4θ7tan6θ
7 M
5 (b) Test the convergence of 2n+13n+n
6 M
5 (c) If x=vw  , y=wu, z=uv, and φ is a function of x,y,z prove that uφu+vφv+wφw=xφx+yφy+zφz
7 M

6 (a) Prove that {f(r)rr¯}=1r2ddr [r2f(r)]
hence or otherwise prove that div (rnr¯)=(n+3)rn
7 M
6 (b) Show thatba1a2<sin1bsin1a<ba1b2 hence show that 
1] π6+315<sin1(35)<π6+18
2] π6+123<sin1(14)<π6115
6 M
6 (c) If u=x3y3z3x3+y3+z3+log(xy+yz+zxx2+y2+z2)  then prove that Xux+yuy+zuz=6x3y3z3x3+y3+z3
7 M

7 (a) Find the extreme values of the function x3+3xy2+72x15x215y2
7 M
7 (b) Examine the convergence of (221221)1+(332332)2+(443443)3+? ...
6 M
7 (c) If(a+ib)x+1y (aib)x1y=a+iβ then find α & β
7 M



More question papers from Applied Mathematics 1
SPONSORED ADVERTISEMENTS