1 (a)
\[ If \ \tan \dfrac {x}{2} = \tan h \ \dfrac {u}{2} \ then \ S.T. \\ u=\log \tan \left ( \dfrac {\pi}{4} + \dfrac {x}{2} \right ) \]
3 M
1 (b)
\[ If \ u = x^y \ find \ \dfrac {\partial^3 u}{\partial x \partial y \partial x} \]
3 M
1 (c)
If ux=yz,vy=zx, wz=xy find \[ j \left [ \dfrac {u,v,w}{x,y,z} \right ] \]
3 M
1 (d)
\[ If y = (x-1)^n \ then \ P.T. \ y+ \dfrac {y_1}{1!} + \dfrac{y_2}{2!}+ \dfrac {y_3}{3!}+ \cdots \ \cdots \dfrac {y_n}{n!}= x^n \]
3 M
1 (e)
\[ P.T.\ sinhx = X + \dfrac {x^3}{3!} + \dfrac {x^5}{5!} + \dfrac {x^7}{7!}+ \]
4 M
1 (f)
Express the matrix A as sum of Hermition and skew Hermition matrix where \[ \begin{bmatrix}
3i &-1+i &3-2i \\1+i &-i &1+2i \\-3-2i &-1+2i &0
\end{bmatrix} \]
4 M
2 (a)
Solve x7+x4+i(x3+1)=0
6 M
2 (b)
Reduce the matrix A to normal form and hence find its rank where \[ A=\begin{bmatrix}0 &1 &-3 &-1 \\1
&0 &4 &3 \\3 &1 &0 &2 \\1 &1 &-2 &0 \end{bmatrix} \]
6 M
2 (c)
State and prove Euler's theorem for three variable and hence find \[ x \dfrac {\partial u}{\partial x} + y \dfrac {\partial u}{\partial y}+ z \dfrac {\partial u}{\partial z} \ where \\
u= \dfrac {x^3 y^3 z^3}{x^3+ y^3 +z^3} \]
8 M
3 (a)
Solve the following system of equations
2x-2y-5z=0
4x-y+z=0
3z-2y+3z=0
x-3y+7z=0
2x-2y-5z=0
4x-y+z=0
3z-2y+3z=0
x-3y+7z=0
6 M
3 (b)
Find the maximum and minimum values of
x3+3xy2-3x2-3y2+4
x3+3xy2-3x2-3y2+4
6 M
3 (c)
Separate into real and imaginary parts of tanh-1 (x+iy).
8 M
4 (a)
If u=2xy, v=x2-y2 and x=rcos?, y=rsin? then find \[ \dfrac {\partial (u_1v)}{\partial (\partial_1 \theta)} \]
6 M
4 (b)
If iii... ? =A+i B, prove that \[ \tan \left ( \dfrac {\pi A}{2} \right )= \dfrac {B}{A} \ and \ A^2 + B^2 = e^{-\pi B} \]
6 M
4 (c)
Solve by crouts methods the system of equations
3x+2y+7z=4
2x+3y+z=5
3x+4y+z=7.
3x+2y+7z=4
2x+3y+z=5
3x+4y+z=7.
8 M
5 (a)
By using De Moivre's theorem Express \[ \dfrac {\sin 7\theta }{\sin \theta} \] in powers of sinθ only.
6 M
5 (b)
By using Taylor's series expand tan-1 x in positive powers of (x-1) upto first four non-zero terms.
6 M
5 (c)
if y=sin [log (x2+2x+1)] prove that (x+1)2 yn+2 + (2n+1 (x+1) )yn+1+ (n2+4)yn=0
8 M
6 (a)
Determine linear dependance or independance of vectors
x1=[1,3,4,2] x2==[3,-5,2,6]
x=[2,-1,3,4] and if dependent find the relation between them.
x1=[1,3,4,2] x2==[3,-5,2,6]
x=[2,-1,3,4] and if dependent find the relation between them.
6 M
6 (b)
If u =x2-y2, v=2xy and z=f(u,v) prove that \[ \left ( \dfrac {\partial z}{\partial x} \right )^2 + \left ( \dfrac {\partial z}{\partial y} \right )^2 = 4\sqrt{u^2+v^2} \left [ \left ( \dfrac{\partial z}{\partial u} \right )^2 + \left ( \dfrac {\partial z}{\partial v} \right )^2 \right ] \]
6 M
6 (c)
Evaluate \[ i) \ \lim_{x\to 0} \dfrac {\sin x. \sin^{-1} x-x^2}{x^6} \] ii) Fit straight line to the following data
(x,y)= (-1, -5), (1,1), (2,4), (3,7), (4, 10)
Estimate y when x=7.
(x,y)= (-1, -5), (1,1), (2,4), (3,7), (4, 10)
Estimate y when x=7.
4 M
More question papers from Applied Mathematics 1