1 (a)
If tanx2=tanh u2 then S.T.u=logtan(π4+x2)
3 M
1 (b)
If u=xy find ∂3u∂x∂y∂x
3 M
1 (c)
If ux=yz,vy=zx, wz=xy find j[u,v,wx,y,z]
3 M
1 (d)
Ify=(x−1)n then P.T. y+y11!+y22!+y33!+⋯ ⋯ynn!=xn
3 M
1 (e)
P.T. sinhx=X+x33!+x55!+x77!+
4 M
1 (f)
Express the matrix A as sum of Hermition and skew Hermition matrix where [3i−1+i3−2i1+i−i1+2i−3−2i−1+2i0]
4 M
2 (a)
Solve x7+x4+i(x3+1)=0
6 M
2 (b)
Reduce the matrix A to normal form and hence find its rank where A=[01−3−11043310211−20]
6 M
2 (c)
State and prove Euler's theorem for three variable and hence find x∂u∂x+y∂u∂y+z∂u∂z whereu=x3y3z3x3+y3+z3
8 M
3 (a)
Solve the following system of equations
2x-2y-5z=0
4x-y+z=0
3z-2y+3z=0
x-3y+7z=0
2x-2y-5z=0
4x-y+z=0
3z-2y+3z=0
x-3y+7z=0
6 M
3 (b)
Find the maximum and minimum values of
x3+3xy2-3x2-3y2+4
x3+3xy2-3x2-3y2+4
6 M
3 (c)
Separate into real and imaginary parts of tanh-1 (x+iy).
8 M
4 (a)
If u=2xy, v=x2-y2 and x=rcos?, y=rsin? then find ∂(u1v)∂(∂1θ)
6 M
4 (b)
If iii... ? =A+i B, prove that tan(πA2)=BA and A2+B2=e−πB
6 M
4 (c)
Solve by crouts methods the system of equations
3x+2y+7z=4
2x+3y+z=5
3x+4y+z=7.
3x+2y+7z=4
2x+3y+z=5
3x+4y+z=7.
8 M
5 (a)
By using De Moivre's theorem Express sin7θsinθ in powers of sinθ only.
6 M
5 (b)
By using Taylor's series expand tan-1 x in positive powers of (x-1) upto first four non-zero terms.
6 M
5 (c)
if y=sin [log (x2+2x+1)] prove that (x+1)2 yn+2 + (2n+1 (x+1) )yn+1+ (n2+4)yn=0
8 M
6 (a)
Determine linear dependance or independance of vectors
x1=[1,3,4,2] x2==[3,-5,2,6]
x=[2,-1,3,4] and if dependent find the relation between them.
x1=[1,3,4,2] x2==[3,-5,2,6]
x=[2,-1,3,4] and if dependent find the relation between them.
6 M
6 (b)
If u =x2-y2, v=2xy and z=f(u,v) prove that (∂z∂x)2+(∂z∂y)2=4√u2+v2[(∂z∂u)2+(∂z∂v)2]
6 M
6 (c)
Evaluate i) limx→0sinx.sin−1x−x2x6 ii) Fit straight line to the following data
(x,y)= (-1, -5), (1,1), (2,4), (3,7), (4, 10)
Estimate y when x=7.
(x,y)= (-1, -5), (1,1), (2,4), (3,7), (4, 10)
Estimate y when x=7.
4 M
More question papers from Applied Mathematics 1