Processing math: 100%




MU First Year Engineering (Semester 1)
Applied Mathematics 1
May 2014
Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


1 (a) prove that sech1 (sinθ)=log(cotθ2)
3 M
1 (b) If x=cosθ-rsinθ, y=sinθ+rcosθ prove that dr/dx = x/r
3 M
1 (c) If x=ev secu, y=ev tanu find  j(u,vx,y)
3 M
1 (d) If y=sinpx+cospx prove that yn=Pn[1+(1)nsin (2px)]12
3 M
1 (e) Find the series expansion of log(1+x) in powers of x, Hence prove that logx=(x1)12(x1)2+13(x1)3 .....
4 M
1 (f) If 'A' is skew-symmetric matrix of odd order then prove that it is singular.
4 M

2 (a) Show that the roots of the equation (x+1)6+(x1)6=0 are given by icot(2n+112)π,n=0,1,2,3,4,5. 
6 M
2 (b) Find two non-singular matrices P & Q such that PAQ is in normal form where A=[123421451557]
6 M
2 (c) If x+y=2eθcos, xy=2ieθsin  & u is a function of x & y the prove that
2uθ2+2uφ2=4xy2uxy
8 M

3 (a) Find the value of λ for which the equations x1+2x2+x3=3, x1+x2+x3=λ, 3x1+x2+3x3=λ2 has a solution & solve them completely for each value of λ
6 M
3 (b) Divide 24 into three parts such that the product of the first, square of the second & cube of the third is maximum.
6 M
3 (c) (i) If cosec(π4+ix)=u+iv  prove that (u2+v2)2=2(u2v2)
4 M
3 (c) (ii) Prove thattan(ilog(aiba+ib))=2aba2b2
4 M

4 (a) Show that (u,v)(x,y)=6 r3sin2 θgiven that u=x2y2, v=2x2y2 & x=rcosθ, y=rsinθ.
6 M
4 (b) If α=1+i, β=1i  andcotθ=x+1 prove that (x+α)n+(x+β)n=(α+β)cosnθ cosecnθ.
6 M
4 (c) Using Gauss-seidel method, solve the following system of equations upto 3rd iteration.
5x-y=9
-x+5y-z=4
-y+5z=-6
8 M

5 (a) Using De-Moivr's theorem, prove that sin6θsinθ=16cos4θ16cos2θ+3 
6 M
5 (b) Expland xex1  in powers of x. hence prove that x2[ex+1ex1]=1+112x21720x4+ .....
6 M
5 (c) If y=sin1x1x2 prove that(1x2)yn+2(2n+3)xyn+1(n1)2yn=0  hence find yn(0)
8 M

6 (a) Examine the linear dependence or independence of vector (1,2,-1,0), (1,3,1,3), (4,2,1,-1) & (6,1,0,-5)
6 M
6 (b) If u=f(xyxy,zxzx)prove that  x2ux+y2uy+z2uz=0
6 M
6 (c) (i) Fit a straight line to the following data with x-as independent variable.
X : 1965 1966 1967 1968 1969
Y : 125 140 165 195 200
4 M
6 (c) (ii) Evaluate limx0(1+tanx)cotx
4 M



More question papers from Applied Mathematics 1
SPONSORED ADVERTISEMENTS