1 (a)
Represent (29)10 into Excess-3 code and Gray code.
2 M
1 (b)
Convert the following hex no. (67.4A)16 into equivalent Octal no.
2 M
1 (c)
Convert decimal (215.32) into base '7'.
4 M
1 (d)
Convert (670.17)8 into binary and hex.
4 M
1 (e)
Add (57)10 and (26)10 in BCD
2 M
1 (f)
Explain uses of Gray code.
4 M
1 (g)
Add (DDCC)16 and (BBAA)16.
2 M
2 (a)
(i) State the boolean algebra laws used in k-map simplification.
(ii) Simplify \[ Y=ABC(\overline{CD})+ \overline{B}CD+ (\overline{A}\overline{C})(B+D).
(ii) Simplify \[ Y=ABC(\overline{CD})+ \overline{B}CD+ (\overline{A}\overline{C})(B+D).
10 M
2 (b)
A misquided mathematician would like to substract term. AC from both sides of equality.
BC+ABD+AC = BC+AC
Would they still be equal if he did so. Justify and simplify the expression. \[F= (x+\overline{z}) (\overline{Z+WY})+ (VZ+W\overline{x})(\overline{Y}+ \overline{Z}) \]
BC+ABD+AC = BC+AC
Would they still be equal if he did so. Justify and simplify the expression. \[F= (x+\overline{z}) (\overline{Z+WY})+ (VZ+W\overline{x})(\overline{Y}+ \overline{Z}) \]
10 M
3 (a)
Simplify using boolean theorems and implement usign AOI gate only. \[i) \overline {\overline{AB+ \overline A \overline B}+ \overline {(A+B)\cdot (\overline{A}+\overline{B})}} \] ii) Implement the following expression using NAND-NAND logic y=?m(0,1,5)
10 M
3 (b)
Simplify using k-map obtain SOP equation and realize using NAND gate. f(A,B,C,D)=ΠM (1,2,3,8,9,10,11,14)+ d(7,15).
10 M
4 (a)
Implement the following expression using 8:1 mux
f(A,B,C,D)=πm(0,1,3,5,7,10,11,13,14,15).
f(A,B,C,D)=πm(0,1,3,5,7,10,11,13,14,15).
4 M
4 (b)
Explain with example 4 bit BCD adder using IC-7483.
8 M
4 (c)
Compare the performance of ITL, CMOS and ECL logic.
8 M
5 (a)
What is shift register? Explain 4 bit bi-directional shift register.
10 M
5 (b)
Convert JK FF to SR and DFF.
10 M
Write short note on (any three):
6 (a)
State table
7 M
6 (b)
VHDL
7 M
6 (c)
Difference between CPLD and FPGA
7 M
6 (d)
Decade counters.
7 M
More question papers from Digital Logic Design & Analysis