GTU Electronics and Communication Engineering (Semester 7)
Digital Signal Processing
December 2014
Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


1 (a) Draw the block diagram of a typical Digital Signal Processing system and explain.
7 M
1 (b) A discrete-time signal x(n) is given below :
X(n)={1,1,1,1,1,1/2}
Sketch and label carefully each of the following signals: (i)x(n-2)
(ii) x(4-n)
(iii) x(2n)
(iv) x(n)u(2-n)
(v)x(n-1)δ(n-3)
7 M

2 (a) Perform the liner convolution of the following sequences:X1(n)={1,2,3,4,5},  X2(n)={1,0,1}
7 M
2 (b) (i) For the following system, determine whether the system is stable,causal,linear,time invariant,memoryless:
T{x(n)}=k=n0nx(k)
What are the advantages of digital signal processing over analog signal processing>
7 M
2 (c) Let X(ejw ) denote the fourier transform of the signal x(n) .Perform the following calculations without explicitly evaluating X(ejw )
X1(n)={1,0,1,2,1,2,1,0,1}
i) Evaluate X(ejw ) ?w=0
ii) Evaluate X(ejw ) ?w=π
iii) Find θ X((ejw))
iv) Evaluate ππX(ejw)dw
v) Determine and sketch the signal whose fourier transform is X(e- jw )
vi) Determine and sketch the signal whose fourier transform is Re{X(ejw )
7 M

3 (a) Determine the z-transform of the following sequences. Sketch ROC and pole zero plot :
(i)x1 (n) = α|n|, 0 < ?α ? < 1
(ii)x2 (n) = (-1/3)n u(n) - (1/2)n u(-n-1)
7 M
3 (b) Suppose the z-transform of x(n) is
X(z)=z10(z(1/2))(z(3/2))10(z+(3/2))2(z+(5/2))(z+(7/2))
It is also known that x(n) is a stable sequence.
(i)Determine the region of convergence of X(z).
(ii) Determine x(n) at n = -8.
7 M
3 (c) Consider the discrete time system with an ideal low pass filter with cutoff frequency π/8 radian/s.
IMAGE
(i)If xc (t) is bandlimited to 5 kHz , what is the maximum value of T that will avoid aliasing?
(ii)If 1/T = 10 kHz , what will the cutoff frequency of the continuous-time filter be?
(iii) Repeat part
(iv) for 1/T=20kHz.
7 M
3 (d) Draw the structures of the following discrete time system:
H(z)=(1+z1)210.75z1+0.125z2
(i)Direct form - I
(ii)Direct Form - II
(iii)Cascade form
(iv)Parallel form.
7 M

4 (a) Discuss the following transformation methods to design digital filters: (i)Impulse invariance (ii)Bilinear transformation
7 M
4 (b) Find the circular convolution of the following sequences:
X1(n)={1,2,3,4}     X2(n){2,1,2,1}
7 M
4 (c) Design a Digital low pass FIR filter using Kaiser window to meet the following specifications:
0.99 ≤?H(ejw )≤ 1.01 , 0 ≤w ≤ 0.4π
?H(ejw )?≤ 0.001 , 0.6π ≤ w ?π
7 M
4 (d) Consider the real finite-length sequence x(n).
X(n)={4,3,2,1}
(i)Sketch the finite length sequence y(n) whose six-point DFT is Y(k) = W64k X(k) , Where X(k) is the six-point DFT of x(n).
(ii) Sketch the finite length sequence w(n) whose six-point DFT is W(k) = Re{ X(k) }
(iii) Sketch the finite length sequence q(n) whose three-point DFT is Q(k) = X(2k) , k=0,1,2
7 M

5 (a) Explain the Decimation in Time FFT algorithm.
7 M
5 (b) Discuss the applications of digital signal processing with suitable examples.
7 M
5 (c) Discuss the key features of the architecture of DSP Processors.
7 M
5 (d) Write a short note on coefficient quantization in IIR filters.
7 M



More question papers from Digital Signal Processing
SPONSORED ADVERTISEMENTS