Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


Answer the following
1 (a) i) Check whether the following signal is periodic or not. If a signal is periodic, find its fundamental period.
X[n]=cos2(π8)8
2 M
1 (a) ii) X (n) = (-0.5)n u (n). State whether it is energy or power signal. Justify
2 M
1 (a) iii) Define and explain the convolution and correlation.
2 M
1 (a) iv) Determine if the following system describe by,
Y(t) = Sin [ x (t+2) ] ; is memory less, causal ,linear ,time invariant, stable.
2 M
Answer the following
1 (b) i) Compute the convolution y(n) = x(n) * h(n), Where
X(n)={1,1,0,1,1} and h(n)={1,2,3,4}
3 M
1 (b) ii) Determine if the systems described by following equations are causal or non causal and stable or not.
(1) T[x(n)] = ex(n)
(2) Y(n) = x(2n)
(3) Y(n) = x(n2 ).
3 M

2 (a) State and prove the properties of Z- transform
(i) Convolution of two sequence.
(ii) Differentiation in Z domain.
7 M
2 (b) Given the two sequence of the length 4 are:
X(n) = {0, 1, 2, 3} h(n) = {2, 1, 1, 2}
Find the circular convolution.
7 M
2 (c) Using graphical method, obtain a 5- point circular convolution of two DT signals defined as,
X(n) = (1.5)n , 2 ≥ n≥ 0
Y(n) = 2n-3, 3 ≥ n ≥ 0.
7 M

3 (a) Find Z transform and ROC of the following sequence.
(i) X1 (n) = [ 3[2n ] - 4 [3n ] ] u[n]
(ii) X2(n)=[(0.5)nsinπn4]u(n)
(iii) X3(n)=n2-2n+3 for n≥0.
7 M
3 (b) State and prove the properties of DFT (I) Periodicity (II) Time shifting.
7 M
3 (c) Determine the response of the system, Y(n)=56y(n1)16y(n2)+x(n) to the input signals.
X(n)=δ(n)13δ(n1)
7 M
3 (d) State and prove the properties of DFT
(I) Circular convolution (II) Multiplication of two sequences
7 M

4 (a) The transfer function of discrete time causal system is given below
H(z)=1z110.2z1+0.15z2
Find the difference equation and draw cascade and parallel realization.
7 M
4 (b) Derive DIT FFT flow graph for N = 4 hence find DFT of
x(n) = {1, 2, 3, 4}
7 M
4 (c) Consider discrete time linear causal system defined by difference equation.
y(n)34y(n1)+18y(n2)=x(n)+13x(n1)
Obtain cascade realization of the same.
7 M
4 (d) Determine Inverse Z-transform of the following :
X(z)=3z3(114z1)2 x(n) left handed system.
7 M

5 (a) Compute the eight point DFT of a sequence
X(n)=(12,12,12,12,0,0,0,0)
Using decimation in time FFT algorithm.
7 M
5 (b) Write short note on multiplier-accumulator (MAC) hardware of DSP processor
7 M
5 (c) Determine the response [y(n)] of FIR filter. Input x(n) is (1,2,2,1) and h(n) is (1,2,3). Use DFT and IDFT formula.
7 M
5 (d) Write short notes on:
1. Harvard architecture of DSP processor.
2. Hanning Window and Kaiser Window Functions
7 M



More question papers from Digital Signal Processing
SPONSORED ADVERTISEMENTS