Answer the following questions with most appropriate answer
1 (a) 1
The maximum value of y = 3cos2x is ____
(a) 1
(b)2
(c)-1
(d)3.
(a) 1
(b)2
(c)-1
(d)3.
1 M
1 (a) 2
If √x+√y=√a then dy/dx_____
a) √(y/a)
(b) √(x/a)
(c) -√(y/x)
(d) -√(y/a).
a) √(y/a)
(b) √(x/a)
(c) -√(y/x)
(d) -√(y/a).
1 M
1 (a) 3
The ( a ? x ) y2 = x2 ( a + x ) is symmetric about
(a) X-axis
(b)Y-axis
(c)both X and Y axis (d) line Y = X
(a) X-axis
(b)Y-axis
(c)both X and Y axis (d) line Y = X
1 M
1 (a) 4
Tangents at origin to the curve y2( a + x ) = x2( 3 a ? x ) is ____
a) ±√x
(b)1
(c) ±√2x
(d) none of these.
a) ±√x
(b)1
(c) ±√2x
(d) none of these.
1 M
1 (a) 5
The parametric equations of x2/3 + y2/3 = a2/3 ( a ≠ 0 ) are
(a) x = a cos θ, y = a sin θ
(b)x = a 3 cos θ , y = a 3 sin θ
(c)x = a cos 3 θ , y = a sin 3 θ
(d)x=1, y=0
(a) x = a cos θ, y = a sin θ
(b)x = a 3 cos θ , y = a 3 sin θ
(c)x = a cos 3 θ , y = a sin 3 θ
(d)x=1, y=0
1 M
1 (a) 6
The area bounded by the curve y = x3 , x-axis and two ordinates x = 1 to x = 2 equal to
(a) 15/2
(b)15/3
(c)15/5
(d)15/4
(a) 15/2
(b)15/3
(c)15/5
(d)15/4
1 M
1 (a) 7
limx→2x2−x−2x2−4= ______
(a) 7/4
(b)3/4
(c)2
(d)-3/4
(a) 7/4
(b)3/4
(c)2
(d)-3/4
1 M
Answer the following questions with most appropriate answer
1 (b) 1
The slope of the tangent to the curve y = xex at ( 0 , 0 ) is___
(a) 0
(b)1
(c)-1
(d)4
(b)1
(c)-1
(d)4
1 M
1 (b) 2
The point of inflection ofx33−x22−2x+14 is______
(a) 1/2
(b)-1/2
(c)-1
(d)-2
(a) 1/2
(b)-1/2
(c)-1
(d)-2
1 M
1 (b) 3
Using the matrix method, the solution of x + y = 2 , 4 x + y = 6
(a)(−43,23)(b)(43,−22)(c)(43,23)(d)(1,2)
(a)(−43,23)(b)(43,−22)(c)(43,23)(d)(1,2)
1 M
1 (b) 4
∫e2xcos3xdx=____+c
(a)e2x13(2cos3x+3sin3x)(b)e2x13(3cos3x+2sin3x)(c)e2x13(2cos3x+3sin3x) (d) none of these.
(a)e2x13(2cos3x+3sin3x)(b)e2x13(3cos3x+2sin3x)(c)e2x13(2cos3x+3sin3x) (d) none of these.
1 M
1 (b) 5
If y = ln√(2x) the derivative of the function y with respect to x is ____
(a) 0
(b)-1/2x (
(c) 1/2x
(d)1/x
(a) 0
(b)-1/2x (
(c) 1/2x
(d)1/x
1 M
1 (b) 6
f ( x ) = x2+ 4 x + 5 has the minimum value ____
(a) 0
(b)1
(c)-1
(d)2
(a) 0
(b)1
(c)-1
(d)2
1 M
1 (b) 7
A curve which passes through the origin and has the slope -1/3 is given by
(a) x + 3 y ? 1 = 0 (b) x + 3 y = 0
(c)x ? 3 y = 0
(d)none of these
(a) x + 3 y ? 1 = 0 (b) x + 3 y = 0
(c)x ? 3 y = 0
(d)none of these
1 M
Answer the given MCQ.
1 (c) 1
F(x) is strictly increasing function on R then______
A) f(x) = 0 for all x
B) f(x) > 0 for all x
C) f(x) < 0 for all x
D) none of these.
A) f(x) = 0 for all x
B) f(x) > 0 for all x
C) f(x) < 0 for all x
D) none of these.
1 M
1 (c) 2
F(x) is strictly decreasing function on R then______
A) f(x) = 0 for all x
B) f(x) > 0 for all x
C) f(x) < 0 for all x
D) none of these.
A) f(x) = 0 for all x
B) f(x) > 0 for all x
C) f(x) < 0 for all x
D) none of these.
1 M
1 (c) 3
dy/dx = ky, k > 0 is the deferential equation for_______
A) Population Model
C) Cooling Model
B) Mixing problem model
D) none of these.
A) Population Model
C) Cooling Model
B) Mixing problem model
D) none of these.
1 M
1 (c) 4
dy/dx = x then y = _______
(a) y=x2 (b)y=∞20+c (c) y=x (d) none of these.
(a) y=x2 (b)y=∞20+c (c) y=x (d) none of these.
1 M
1 (c) 5
Curve of y = x2 +3 is______
A) Symmetric with respect to x axis.
B) Symmetric with respect to y axis.
C) Symmetric with respect to origin.
D) none of these.
A) Symmetric with respect to x axis.
B) Symmetric with respect to y axis.
C) Symmetric with respect to origin.
D) none of these.
1 M
1 (c) 6
r = a cosθ is_____
(a) Line (b) laminiscate (c) circle (d) None of these.
(a) Line (b) laminiscate (c) circle (d) None of these.
1 M
1 (c) 7
∫10x2dxis_____
(a) area under a line (b) area under circle (c) area under parabola (d) none of these.
(a) area under a line (b) area under circle (c) area under parabola (d) none of these.
1 M
Answer the given MCQ.
1 (d) 1
∫−aaf(x)dx=0if_________
(a) f is an odd function (b) f is neither odd nor even function (c) f is an even function (d) none of these.
(a) f is an odd function (b) f is neither odd nor even function (c) f is an even function (d) none of these.
1 M
1 (d) 2
z = x2 + y2 is ________
A) Cone
B) Paraboloid
C) Sphere
D) None of there.
A) Cone
B) Paraboloid
C) Sphere
D) None of there.
1 M
1 (d) 3
lim(x,y)→(0,0)x2−yxx+y=_____
A)2
B) 1
C) 0
D) -1
A)2
B) 1
C) 0
D) -1
1 M
1 (d) 4
Ifz=x2−y2then∂z∂x=_______
A)2y
B) 0
C) 2z
D) none of these.
A)2y
B) 0
C) 2z
D) none of these.
1 M
1 (d) 5
Equation of tangent plane of z = x at (2,0,2) is
A)z=x
B) x+y+z=2
C) x+z=0
D) none of these.
A)z=x
B) x+y+z=2
C) x+z=0
D) none of these.
1 M
1 (d) 6
If z = x2 +y2 + 3 minimum value z is ______
A) 3
B) ∞
C) 0
D) none of these.
A) 3
B) ∞
C) 0
D) none of these.
1 M
1 (d) 7
Y = sin2x is increasing in interval _________
A) (0,π) B)(0,π4) (c) (0,π2)
D) none of these.
A) (0,π) B)(0,π4) (c) (0,π2)
D) none of these.
1 M
2 (a)
Test the convergence of11.2.3+32.3.4+53.4.5+..........
3 M
2 (b)
Prove that1+23+49+827+1681+......converges and find its sum.
4 M
2 (c)
State Taylor's series for one variable and hence find √(36.12).
7 M
3 (a)
Find ∂w∂r,∂w∂s in terns of r and s if w =2y+z2 where x=rs,y=r2+lns,z=2r.
3 M
3 (c)
Ifu=cosec−1[x1/2+y1/2x1/3+y1/3]1/2showthatx2∂2u∂x2+2xy∂2u∂x∂y+y2∂2u∂y2=tanu144(13+tan2u). Also state Euler's modified theorem.
7 M
4 (a)
Evaluate limx→0[1x2−1sin2x].
3 M
4 (b)
Expand ex sin y in powers of x and y upto third degree.
4 M
4 (c)
A rectangular box, open at the top, is to have a volume 32 c.c. Find the
dimensions of the box requiring least material for its construction.
7 M
5 (a)
Find the volume of the tetrahedron bounded by the plane x + y + z = 2 and the
planes x = 0 , y = 0 and z = 0 .
3 M
5 (b)
Trace the curve r = a ( 1 + cos θ ).
4 M
5 (c)
Evaluate ∫4a02√ax∫x2/4adydx by changing the order of integration.
7 M
6 (a)
Evaluate ∫∞0dxx2+1.
3 M
6 (b)
Evaluate the integral ∫101−x∫0eyex+y dydx by changing the variables x + y = u , y = uv.
4 M
6 (c)
Evaluate ∬Rx2 dA where R is the region in the first quadrant bounded by the hyperbola xy = 16 and the lines y = x , y = 0 and x = 8 .
7 M
7 (a)
Test the convergence of ∞∑n=12tan−1n1+n2.
3 M
7 (b)
Find the equation of tangent plane and normal line to the surface xyz = 6 at
( 1 , 2 , 3 )
4 M
7 (c)
Evaluate 1∫0√1−x2∫0√1−x2−y2∫0 xyz dzdydx.
7 M
More question papers from Calculus