Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


Choose the most appropriate answer out of the following options given for each part of the question:
1(a)(i) The sum of the series 112+122123+ is _______
(A) 2/3   (B) 3/2   (C) 1/2   (D) None of these
1 M
1(a)(ii) The series x+x33!+x55!+ represent expansion of _______
(A) sin x   (B) cos x   (C) sinh x   (D) coshx
1 M
1(a)(iii) The value of the limxsinxx is _______
(A) 1   (B) -1   (C) 0   (D) None of these
1 M
1(a)(iv) The curve r=cos2θ has _______ petals.
(A) 2   (B) 4   (C) 3   (D) None of these
1 M
1(a)(v) If x=rcosθ, y=rsinθ, then (r,θ)(x,y) = _______
(A) r   (B) 1/r   (C) 3   (D) None of these
1 M
1(a)(vi) If u=x3cos(y/x),then xux+yuy = _______
(A) u   (B) 2u   (C) 3u   (D) None of these
1 M
1(a)(vii) The equation of a cylindrical surface x2+y2=9 becomes _______ when converted to cylindrical polar coordinates.
(A) r=9   (B) r2 = 9   (C) r=±3   (D) r=3
1 M
1(b)(i) The series n=11(logn)n is _______
(A) oscillatory   (B) divergent   (C) convergent   (D) None of these
1 M
1(b)(ii) If in the equation of a curve, x occurs only as an even power then the curve is symmetrical about
(A) x-axis   (B) y-axis   (C) Origin   (D) None of these
1 M
1(b)(iii) The value of the limx0(cosx)cotx is _______
(A) 0   (B) 1   (C) &infin   (D) None of these
1 M
1(b)(iv) The integral aaf(x)dx=20af(x)dx if _______
(A) f is an odd function   (B) f is neither even nor odd function   (C) f is a even function   (D) None of these
1 M
1(b)(v) The volume of the solid generated by revolving the region between the y - axis and the curve (x=2\sqrt{y},0\leq y\leq 4, \) about the y ' axis.
(A) 2π   (B) 32π (C) 16π   (D) None of these
1 M
1(b)(vi) 020x2ey/xdydx is equal to _______ (A) e2-1   (B) e2   (C) e2+1   (D) e-2
1 M
1(b)(vii) A point ( a , b ) is said to be a saddle point if at ( a , b )
(A) rt-S2 >0   (B) rt-S2 = 0   (C) rt-S2 < 0   (D) rt-S2 ≥ 0
1 M

2(a) Expand (π4+x) in powers of x by using the Taylor's series. Also, find the value of tan 44°.
4 M
2(b) Evaluate: limx0(1x)tanx.
3 M
2(c)(i) Test for convergence the series xx33+x55,  x>0.
3 M
2(c)(ii) Trace the curve r2 = a2sin 2θ.
4 M

3(a) If θ=tner24tthen find n so that  1r2r(r2θr)=θt.
4 M
3(b) Determine the continuity of the function f(x,y)={(x2+y2)sin(1x2+y2),(x,y)(0,0)0,(x,y)=(0,0)    at origin.
3 M
3(c)(i) If u = tan-1(x2+2y2), show that x2uxx + 2xy uxy + y2uyy = 2sin u.cos 3u
4 M
3(c)(ii) If u=f(yxxy,zxxz),show that x2ux+y2uy+z2uz=0
3 M

4(a) Find the extreme values of the function f(x, y) = x3+3xy2-15x2-15y2+72x.
4 M
4(b) Find the equation of the tangent plane and the normal line of the surface x24+y2+z29=3 at (2,1,3).
3 M
4(c)(i) Show that the rectangular solid of maximum volume that can be inscribed in a sphere is cube.
4 M
4(c)(ii) Expand xy2+xy+3 in powers of (x-1) and (y+2) using Taylor's series expansion.
3 M

5(a) Find the radius of convergence and interval of convergence of the series n=0(3)nxnn+1
4 M
5(b) Test the convergence of the series n=1n4+1n41.
3 M
5(c)(i) Define geometric series and show that the geometric series is :
(i) convergent if |r| < 1, (ii) divergent if r ≥ 1
4 M
5(c)(ii) Express (x-1)4+2(x-1)3+5(x-1)+2 in ascending power of x.
3 M

6(a) Evaluate R(x+y)dy dx , where R is the region bounded by x=0, x=2, y=x, y=x+2.
4 M
6(b) Evaluate Rr3sin2θ dr dθ over the area bounded in the first quadrant between the circles r=2 and r=4.
3 M
6(c)(i) Evaluate 1e1logy1exlogz dz dx dy
4 M
6(c)(ii) Evaluate limxπ2(cos)π2x.
3 M

7(a) Find the volume of the solid generated by revolving the curve x2/3+y2/3=a2/3 about the x-axis.
4 M
7(b) Find the area lying inside the circle r = a sinθ and outside the cardioid r = a (1 ' cosθ).
3 M
7(c)(i) Evaluate 01x2x2xx2+y2dy dx by changing the order of integration.
4 M
7(c)(ii) Check the convergence of 051x2dx.
3 M



More question papers from Calculus
SPONSORED ADVERTISEMENTS