Loading [MathJax]/jax/element/mml/optable/MathOperators.js




Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


Attempt the following.
1 (a) 1 Maclaurin series of sin x is
a)n=0x2n+1(2n+1)! b)n=0x2n+1(2n+1)! c)n=0x2n(2n)! d)n=0(1)nx2n(2n)!.
1 M
1 (a) 2 The total area enclosed between y=sin x and X-axis in [0,π] is
a) 0
b) 4
c) 2
d) 1.
1 M
1 (a) 3 The value of limx2x1/x
a) ∞
(b) -∞
(c) 1
(d) 0,
1 M
1 (a) 4 How many leaves r=sin5 θ has?
a) 6
(b) 2
(c) 3
(d) 5.
1 M
1 (a) 5 The sum of the series \\sum_{n=1}^{\infty }\dfrac{1}{2^{n}}\] is
a) 0
(b) 1
(c) -1
(d) 1/2.
1 M
1 (a) 6 The values of x at which the curves y=x& y=4x-x2 intersects each other are
a) 0 & 4
b) -4 & 4
c) 0 & 3
d) -3 & 3.
1 M
1 (a) 7 The area enclosed between the curve r=f(θ) and two rays θ=α & θ=β is
a)βαr2dθ b)βαr3dθ c)4π3βαr3dθ d)12βαr2dθ.
1 M
Attempt the following.
1 (b) 1 If u=sin1xy+tan1yx the the value of xux+yuy is
a) u
(b) -u
(c) 0
(d) 1.
1 M
1 (b) 2 For an implicit function f(x,y)=c the value of dydx is
a)fxfy b)fyfx c)fxfy d)fyfx.
1 M
1 (b) 3 For the function u=(x2+y2)1/3 the value of x2uxx+2xyuxy+y2uyy is
a)2u (b)2u3 (c)u9 (d)2u9.
1 M
1 (b) 4 If x=rcosθ and y=rsinθ then J=(r,θ)(x,y) is
a)r b)r (c)1r (d)1r.
1 M
1 (b) 5 The fundamental period of sin 2x is
a) π
(b) 2π
(c) 4π
(d) π/2.
1 M
1 (b) 6 The focus pf parabola y24ax is (ae,0) if
a) e<1
(b) e>1
(c) e=1
(d) e≠1.
1 M
1 (b) 7 The function f(x)=2x3+3x2-12x+7 is decreasing in
a) [-2,1]
(b) R-[-2,1]
(c) [0,2]
(d) [1,3].
1 M
Objective Question (MCQ)
1 (c) 1 limx2x24x2+4=
a) 1
(b) 0
(c) -1/2
(d) None of these.
1 M
1 (c) 10 Use matrices to solve the following simultaneous equations x+2 y= 3
2x+3 y=5
(a) x= 2 ; y=1
(b)x=1 ; y=1 (
(c) x=2 ; y=2
(d)None of these.
1 M
1 (c) 11 Determine the area bounded by the x axis, the curve y=2x2+x-6, and the line x=4 and x=6
a) 298
(b) 126 c) 9913 (d) 2623.
1 M
1 (c) 12 Given the function f ( x )=x2 which value of c satisfies the conclusion of mean value theorem on the interval [-4, 5]?
(a) 0
(b)1
(c)1/2
(d)None of these.
1 M
1 (c) 13 Eliminate the parameter in the equations x=t2; y=t4
a) y=x2 for x≥0
(b) y=√(x) for x≥0
(c) y=2x2 for x≥0
(d) None of these.
1 M
1 (c) 14 At how many places does the curve x=cos 3 t ; y=sin t cross the x-axis?
a) 2
(b) 1
(c) 3
(d) None of these.
1 M
1 (c) 2 f(x)x2x2x;x0f(0)=k
If
and if f is continuous on x=0 then k=
a) -1
(b) -1/2
(c) 0
(d) None of these.
1 M
1 (c) 3 What is the slope of the tangent line to the curve x+y=xy at point (2, 2)
a) -1
(b) -2
(c) -3
(d) -4
1 M
1 (c) 4 Determine the second derivative of the function f(x)=x2. 1n 2x
a) 21n2x+3
(b)21n2x+32
(c) 0
(d) None of these.
1 M
1 (c) 5 At a minimum, the second differential function of the form y=axn+bxn-1+...... is
a) Positive
(b)Negative
(c)Zero
(d)Infinite.
1 M
1 (c) 6 Ify=3x4 then  y dxa)15x5+c b)1x3+c c)12x3+c d)None of these.
1 M
1 (c) 7 Evaluate y=π20 sin(4x)sin(6x)dx
a)y=π2 b)y=π4 c)y=3π4 dy=0.
1 M
1 (c) 8 Use matrices to solve the following simultaneous equations
x+2z=9 4x+2y+z=14 x+3y+4 z=26
(a) x=3; y=-1/2;z=3
(b)x=-1;y=1;z=6 (
(c) x=1;y=3;z=4
(d)x=1;y=4;z=2.
1 M
1 (c) 9 Determine the area bounded by The x axis, the curve y=sin 2 x ,and the linex=π4 and x=π/2
a) 0.5
(b) 1
(c) 0.25
(d) 1.5.
1 M

2 (a) Show that the P-series n=11(n)p (P- a real constant ) converges if P>1 and diverges if p≤1.
3 M
2 (b) Define the Geometric series and find the sum of the following series n=13n116n1.
4 M
2 (c) 1)Investigate the convergence of the series n=12n+53n
2) Is the series n=12n+1(n+1)2converges or diverges?
7 M

3 (a) Define Taylor?s series for the function of one variable and using it show that tan1(x+h)=tan1x+(hsinα)sinα1(hsinα)2sin2α2+(hsinα)3sin3α3+ where α=cot1x.
3 M
3 (b) Trace the curve 9ay2=x(x-3a)2.
4 M
3 (c) Attempt the following.
1)limx2[ax+bx+cx3]1/3x
2)Define volume of solid of revolution by Washer's method and use it to find the volume of solid generated when the region between the graphs
f(x)=12+x2 and g(x)=x over the interval [0,2] is revolved about x-axis.
7 M

4 (a) Define Improper integral of both the kinds. Check the convergence of 30dx9x2.
3 M
4 (b) Trace the curve r2=a2 cos 2θ.
4 M
Attempt the following.
4 (c) 1) Evaluate limx2[1x21sin2x]
2)Define the volume of solid of revolution by disk and use it to find the volume of the solid that is obtained when the region under the curve y=√(x) over the Interval [1,4]is revolved about X- axis.
7 M

5 (a) Define Homogeneous function of two variables x and y of degree n . Also prove the following Euler's theorem for this homogeneous function of degree n .
xux+yuy=nu
3 M
5 (b) If u=tan1[x3+y3xy] then prove that x22ux2+2xy2uxy+y22uy2=2cos3usinu.
4 M
Attempt the following.
5 (c) 1) If x=ρsinφcosφ, y=ρsinφsinφand z=ρcosφ then obtain the Jacobean
J=(x,y,z)(ρ,ϕ,θ)
2) In a plane triangle ABC find the extreme values of cos A cos B cos C .
7 M

6 (a) If u=sin-1(x-y),x=3t.y=4t3 then show that dudt=31t2.
3 M
6 (b) If u=f(r) and r2=x2+y2+z2 then show that 2ux2+2uy2+2uz2=f(r)+2rf(r).
4 M
Attempt the following.
6 (c) 1) Find the equations of the tangent plane and normal line to the surface
2xz2-3xy-4x=7 at (1,-1,2).
2) Find the minimum value of x2+y2+z2, given that ax+by+cz=p.
7 M

7 (a) Evaluate over the triangular region R enclosed between the lines y=-x+1,y=x+1& y=3.
3 M
7 (b) Evaluate the integral \int_{0}^{2}\limits \int_{y/2}^{1}\limits e^{x^{2}} dxdy by changing the order of integration.
4 M
Attempt the following.
7 (c) 1) Use double integral in polar integral to find the area enclosed by three petalled rose r= sin 3θ.
2).Use triple integral to find the volume of the solid within the cylinder x2+ y2=9 between the planes z= 1 and x+z=1.
7 M



More question papers from Calculus
SPONSORED ADVERTISEMENTS