1(a)
prove that Eigen values of a hermitian matrix are real.
5 M
1(b)
Evaluate∫cekxzdz∫cekxzdz over the circle |z|=1 and k is real.hence prove that∫π0ckcosθcos(ksinθ)dθ=π∫π0ckcosθcos(ksinθ)dθ=π
5 M
1(c)
Find the extremal of ∫x1x2(16y2−(yn)2+x2)dx∫x1x2(16y2−(yn)2+x2)dx
5 M
1(d)
Find a vector orthogonal to both u =(-6,4,2)and v=(3,1,5).
5 M
2(a)
Find the curve y=f(x)for which ∫x2x1y√1+(y′)2dx is minimum subject to the constraint ∫x2x1y√1+(y′)2dx=l.
6 M
2(b)
Find eigen values and eigen vectors of the matrix A=[−25457545−2]
6 M
2(c)
Obtain Taylors series and two distinct Laurents series expansion of f(z)=z2−1z2+5z+6about z=0, indicating region of convergence.
8 M
3(a)
State Cayley-Hamilton Theorem,hence deduce that A8=6251,where A=[122−1]
6 M
3(b)
Using calculus of Residues,prove that ∫2pi0ecosθcos(sinθ−nθ)dθ=2πn!
6 M
3(c)
Find the plane curve of fixed perimeter and maximum area.
8 M
4(a)
State Cauchy-Schwartz inequality and hence show that (x2+y2+z2)1/2≥113(3x+4y+12z),x,y,z are positive.
6 M
4(b)
Reduce the quadratic form Q =x2+y2-2z2-4xy-2yz+10xz to to Canonical form using congruent transformation.
6 M
4(c) (ii)
Show that the matrix A=[5−6−6−1423−6−4]is Derogatory.
4 M
4(c)(i)
If A=[π/23π/2ππ], find Sin A
4 M
5(a)
Using Rayleigh-Ritz method,find an appropriate solution for the extremal of the functional I[y(x)]=∫10[xy+12(y′)2]dx subject to y(0)=y(1)=0.
6 M
5(b)
Find an orthonormal basis of the following subspace of R3,S ={[1,2,0][0,3,1]}.
6 M
5(c)
Is the matrix A=[211121001]diagonalizable.If so find diagonal form and transforming matrix.
8 M
6(a)
Find f(3),f'(1+i),f"(1-i),if f(a)=(∫c3x2+11z+7z−adzc:|z|=2
6 M
6(b)
Evaluate∫∞0x3sinx(x2+z2)2 using contour integration.
6 M
6(c)
Find the singular value decomposition of the matrix A=[11111−1]
8 M
More question papers from Applied Mathematics 4