MU Electronics and Telecom Engineering (Semester 4)
Applied Mathematics 4
December 2015
Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


1 (a) Find the extremal of \( \int_{x_4}^{x_1} (2xy - y^{-/2}) dx \)
5 M
1 (b) Find an orthonormal basis for the subspaces of R3 by applying gram-Schmidt process where S={(1, 2, 0) (0, 3, 1)}.
5 M
1 (c) Show that Eigen values of unitary matrix are of unit modulus.
5 M
1 (d) Evaluate \( \int \dfrac {dz}{z^3 (z+4)} \text { where }|z|=4 \)
5 M

2 (a) Find the complete solution of \( \int^{x_1}_{z_0} (2xy - y^{1/2})dx \)
6 M
2 (b) Find the Eigen value and Eigen vectors of the matrix A^3 where \( A=\begin{bmatrix} 4 &6 &6 \\1 &3 &2 \\-1 &-5 &-2 \end{bmatrix} \)
6 M
2 (c) Find expansion of \( f(z) = \dfrac {1} {(1+z^2)(z+2)} \) indicating region of convergence.
8 M

3 (a) Verify Cayley-Hamilton Theorem and find the value A64 for the matrix \( A= \begin{bmatrix} 1 &2 \\2 &-1 \end{bmatrix}\)
6 M
3 (b) Using Cauchy's Residue Theorem evaluate \( \int^\infty_{-\alpha} \dfrac {x^2}{x^6 +1}dx \)
6 M
3 (c) Show that a closed curve 'C' of given fixed length (perimeter) which encloses maximum area is a circle.
8 M

4 (a) State and prove Cauchy-Schwartz inequality. Verify the inequality for vector u=(-4, 2, 1) and v=(8, -4, 2).
6 M
4 (b) Reduce the quadratic form xy+yz+zx to diagonal form through congruent transformation.
6 M
4 (c) If \( A= \begin{bmatrix} \frac {3}{2} & \frac {1}{2} \\ \frac {1}{2} & \frac {3}{2} \end{bmatrix} \) then find eA and 4A with the help of Modal Matrix.
8 M

5 (a) Solve the boundary value problem \( \int^1_0 (2xy+y^2 - y^2) dx, \ 0\le x \le 1, \ y(0)=0, \ y(1)=0 \) by Rayleigh - Ritz Method.
6 M
5 (b) If W={∝; ∝∈Rn and a1 ≥ 0} a subset of V=Rn with ∝=(a1, a2 ....... an) in Rn (n≥3.). Show that W is not a subspace of V by giving suitable counter example.
6 M
5 (c) Show that the matrix \( A=\begin{bmatrix} 8 &-8 &-2 \\4 &-3 &-2 \\3 &-4 &1 \end{bmatrix} \) is similar to diagonal matrix. Find the diagonalising matrix and diagonal form.
8 M

6 (a) State and prove Cauchy's integral Formula for the simply connected region and hence evaluate \[ \int \dfrac {z+6}{z^2-4}dz, |z-2|=5 \]
6 M
6 (b) Show that \( \int^{2\pi}_0 \dfrac {\sin^2 \theta}{a+ b\cos \theta}d \theta = \dfrac {2\pi}{b^2} (a- \sqrt{a^2 - b^2}), \ 0 < b< a. \)
6 M
6 (c) Find the Singular value decomposition of the following matrix \( A=\begin{bmatrix} 1 &2 \\1 &2 \end{bmatrix} \)
8 M



More question papers from Applied Mathematics 4
SPONSORED ADVERTISEMENTS