This Qs paper appeared for Applied Mathematics - 3 of
Electronics Engineering . (Semester 3)
1 (a)
Prove that f(z)=(x3-3xy2+2xy) + i(3x2y-x2+y2-y3) is analytic and find f'(z) & f(z) in terms of z
5 M
1 (b)
Find the Fourier series expansion for f(x)=|x|, in (-?, ?) Hence deduce that
\[\frac{{\pi{}}^2}{8}=\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}...\]
\[\frac{{\pi{}}^2}{8}=\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}...\]
5 M
1 (c)
Find the inverse Laplace transform of \[\frac{e^{-z^3}}{s^2-2s+2}\]
5 M
1 (d)
\[If\ \left\{\ f\left(k\right)\right\}=\left\{\ 2^0,2^1,\ 2^3,...\right\}\] Find Z{ f(k) }
5 M
2 (a)
Evaluate \[\int_0^{\infty{}}e^{-2t}\sinh{t\frac{\sin t}{t}}\ dt\]
6 M
2 (b)
Find the Fourier series expansion for \[f\left(x\right)={\left(\frac{\pi{}-x}{2}\right)}^2\] in the interval
0 ? x ? 2? & f(x+2?)=f(x) Also deduce that \[\frac{{\pi{}}^2}{6}=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...\]
0 ? x ? 2? & f(x+2?)=f(x) Also deduce that \[\frac{{\pi{}}^2}{6}=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...\]
7 M
2 (c)
Show that \[\left[\begin{array}{cc}1 & -\tan{\frac{\theta{}}{2}} \\\tan{\frac{\theta{}}{2}} & 1\end{array}\right]\ \left[\begin{array}{cc}1 & \tan{\frac{\theta{}}{2}} \\-\tan{\frac{\theta{}}{2}} & 1\end{array}\right]=\left[\ \begin{array}{cc}\cos{\theta{}} & -\sin{\theta{}} \\\sin{\theta{}} & \cos{\theta{}}\end{array}\right]\]
7 M
3 (a)
Find Laplace Transform of following
\[\left(i\right)\ \int_0^1\frac{1-e^{-au}}{u}\ du\]
\[\left(ii\right)\ \ {\left(t\sinh{2t}\right)}^2\]
\[\left(i\right)\ \int_0^1\frac{1-e^{-au}}{u}\ du\]
\[\left(ii\right)\ \ {\left(t\sinh{2t}\right)}^2\]
6 M
3 (b)
Find non-singular matrices P & Q s.t. PAQ is in Normal form. Also find rank of A & A-1
\[A=\left[\begin{array}{ccc}1 & 3 & 3 \\1 & 4 & 3 \\1 & 3 & 4\end{array}\right]\]
\[A=\left[\begin{array}{ccc}1 & 3 & 3 \\1 & 4 & 3 \\1 & 3 & 4\end{array}\right]\]
7 M
3 (c)
Evaluate by Green's theorem \[\int_C^{\ }\ \left[\left(3x^2-8y^2\right)\ dx+\left(4y-6xy\right)\ dy\right]\] where C is the boundary of the region bounded by \[y=\sqrt{x},\ \ y=x^2\]
7 M
4 (a)
Obtain complex form of Fourier series for the functions f(x)= eax in (0,a)
6 M
4 (b)
For what value of ? the equations x+y+z=1, x+2y+4z=?, x+4y+10z=?2 have a solution and solve them completely in each case.
7 M
4 (c)
Find inverse Laplace Transform of following
\[\left(i\right)\ \log{\left(1+\frac{a^2}{s^2}\right)}\]
\[\left(ii\right)\ \frac{s}{{\left(s+1\right)}^2\left(s^2+1\right)}\]
\[\left(i\right)\ \log{\left(1+\frac{a^2}{s^2}\right)}\]
\[\left(ii\right)\ \frac{s}{{\left(s+1\right)}^2\left(s^2+1\right)}\]
7 M
5 (a)
Prove that u=e3 cos y+x3 - 3xy2 is harmonic
6 M
5 (b)
Determine the linear dependence of vectors [2, -1, 3, 2], [1,3,4,2], & [3,-5,2,2] Find the relation between them if dependent
7 M
5 (c)
Using Fourier Cosine integral prove that \[e^{-x}\cos{x=\frac{2}{\pi{}}\\int_0^{\infty{}}\frac{\left({\omega{}}^2+2\right)}{\left({\omega{}}^4+4\right)}.\\cos{\omega{}\ x\ d\omega{}}}\]
7 M
6 (a)
Obtain half-range sine series for f(x)= x (2-x) in 0
6 M
6 (b)
Find the bilinear transformation which maps the points 0, I, -2i of z-plane on to the points -4i, ?, 0 respectively of w-plane. Also obtain fixed points of the transformation
7 M
6 (c)
Verify Stoke's theorem for F=yzi + zxj+xy k and c is the boundary of the circel x2+y2+z2=1, z=0
7 M
7 (a)
Find inverse Z-transform of \[F(z)=\dfrac {z}{(z-1)(z-2)},|z|>2 \]
6 M
7 (b)
Find the analytic function f(z)= u+iv in terms of z if u-v=ex (cos y - sin y)
7 M
7 (c)
Using laplace trasnform solve the following differential equation with given condition. (D2-2D+1) x=et, with x=2, Dx=-1, at t=0
7 M
More question papers from Applied Mathematics - 3