1 (a)
Evaluate ∫∞0(cos6t−cos4t)t dt∫∞0(cos6t−cos4t)t dt
5 M
1 (b)
Obtain complex form of fourier series for f(x)= eax in (-1, 1)
5 M
1 (c)
Find the work done in moving a particle in a force field given by ˉF=3xy ˆi−5zˆj+10xˆk¯F=3xy ^i−5z^j+10x^k along the curve x=t2+1, y=2t2, z=t3 from t=1 to t=2
5 M
1 (d)
Find the orthogonal trajectory of the curves 3x2y+2x3-y3-2y2 = ?, where &lpha; is a constant
5 M
2 (a)
Evaluate d2ydt2+2dydt−3y=sint,d2ydt2+2dydt−3y=sint, y(0)=0, y'(0)=0, by Laplace transform
6 M
2 (b)
Show that J52= √2πx[3−x2x2sinx−3xcosx ]J52= √2πx⎡⎣3−x2x2sinx−3xcosx ⎤⎦
6 M
2 (c) (i)
Find the constant a,b,c so that ˉF=(x+2y+az)ˆi+(bx−3y−z)ˆj+(4x+(y+2z)ˆk¯F=(x+2y+az)^i+(bx−3y−z)^j+(4x+(y+2z)^k
4 M
2 (c) (ii)
Prove that the angle between two surface x2+y2+z2=9 and x2+y2-z=3 at the point (2,-1,2) is cos−1(83√21)cos−1(83√21)
4 M
3 (a)
Obtain the fourier series of f(x) given by
f(x)={0, &−π≤x≤0x2, &0≤x≤πf(x)={0, &−π≤x≤0x2, &0≤x≤π
f(x)={0, &−π≤x≤0x2, &0≤x≤πf(x)={0, &−π≤x≤0x2, &0≤x≤π
6 M
3 (b)
Find the analytic function f(z)= u+iv where u=r2 cos2θ-r cosθ+2
6 M
3 (c)
Find Laplace transform of
(i) te-3t cos2t.cos3t
(ii) ddt[sin3tt]ddt[sin3tt]
(i) te-3t cos2t.cos3t
(ii) ddt[sin3tt]ddt[sin3tt]
8 M
4 (a)
Evaluate ∫ J3(x) dx and Express the result in terms of J0 and J1
6 M
4 (b)
Find half range sine series for f(x)= πx-x2 in (0, π) Hence deduce that π332=112−132+152−172+ππ332=112−132+152−172+π
6 M
4 (c)
Find inverse Laplace transform of :-
(i)1stanh−1(s)(i)1stanh−1(s)
(ii) se−2s(s2+2s+2)(ii) se−2s(s2+2s+2)
(i)1stanh−1(s)(i)1stanh−1(s)
(ii) se−2s(s2+2s+2)(ii) se−2s(s2+2s+2)
8 M
5 (a)
Under the transformation w+2i=z 1/z, show that the map of the circle |z|=2 is an ellipse in w-plane
6 M
5 (b)
Find half range cosine series of f(x)= sinx in 0 ≤ x ≤ π Hence deduce that
11.3+13.5+15.7+?=1211.3+13.5+15.7+?=12
11.3+13.5+15.7+?=1211.3+13.5+15.7+?=12
6 M
5 (c)
Verify Green's theorem, for ∮C(3x2−8y2)dx+(4y−6xy)∮C(3x2−8y2)dx+(4y−6xy) by where c is boundary of the region defined by x=0, y=0, and x+y=1
8 M
6 (a)
Using convolution theorem; evaluate
L−1{1(S−1)(s24)}L−1⎧⎪ ⎪⎨⎪ ⎪⎩1(S−1)(s24)⎫⎪ ⎪⎬⎪ ⎪⎭
L−1{1(S−1)(s24)}L−1⎧⎪ ⎪⎨⎪ ⎪⎩1(S−1)(s24)⎫⎪ ⎪⎬⎪ ⎪⎭
6 M
6 (b)
Find the bilinear transformation which maps the points z=1, I, -1 onto w=0, 1, ?
6 M
6 (c)
By using the appropriate theorem, evaluate the following :-
(i) ∫ˉFc˙dˉr wherebarF=(2x−y)ˆi−(yz2)ˆj−(y2z)ˆk(i) ∫¯Fc˙d¯r wherebarF=(2x−y)^i−(yz2)^j−(y2z)^k
and c is the boundary of the upper half of the sphere x2+y2+z2=4
(ii) ∬s (9xˆi+6yˆj−10zˆk) c˙dˉs(ii) ∬s (9x^i+6y^j−10z^k) c˙d¯s
where s is the surface of sphere with radius 2 uints.
(i) ∫ˉFc˙dˉr wherebarF=(2x−y)ˆi−(yz2)ˆj−(y2z)ˆk(i) ∫¯Fc˙d¯r wherebarF=(2x−y)^i−(yz2)^j−(y2z)^k
and c is the boundary of the upper half of the sphere x2+y2+z2=4
(ii) ∬s (9xˆi+6yˆj−10zˆk) c˙dˉs(ii) ∬s (9x^i+6y^j−10z^k) c˙d¯s
where s is the surface of sphere with radius 2 uints.
8 M
More question papers from Applied Mathematics - 3