Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


1 (a) Determine the even and odd part of the signal x(t) shown in Fig. Q1(a).

6 M
1 (b) The signal x1(t) and x2(t) are shown in Fig 1(b). Sketch the following signals:
i) x1(t) + x2(t)
ii) x1(t).x2(t)
iii) x1(1/2)
iv) x2(2t)
v) x2(t) x1(t)

8 M
1 (c) Check whether each of the following signals is periodic or not. If periodic determine its fundamental period: i) x(n)=cos(2n)ii) x(n)=(1)niii) x(n)=cos(π8n2)
6 M

2 (a) Perform the convolution of the following signals shown in Fig. Q2(a) and also sketch the o/p signal y(t).

8 M
2 (b) Compare the convolution sum of
x(n)-?n[u(n)-u(n-8)], |?|<1 and h(n)=u(n)-u(n-5).
8 M
2 (c) Compute the convolution of two sequences
x1(n)={1, 2, 3} and x2(n)={1, 2, 3, 4}
4 M

3 (a) Check the followings are stable, causal and memoryless;
i) h(t)=e-tu(t+100)
ii) h(t)=e-4|t|
iii) h(n)=2u(n)-2u(n-2)
iv) h(n)=?(n)+sin(n?).
8 M
3 (b) Find the total response of the system given by d2y(t)dt2+3dy(t)dt+2y(t)=2x(t) with y(0)=1,dy(t)dtt=0=1 and input x(t)cost u(r)
7 M
3 (c) Find the difference equation corresponding to the block diagram shown in Fig Q3(c).

5 M

4 (a) If x(n)DTFSX(k) and y(n)DTFSY(k), then prove that x(n).y(n)DTFSX(k)Y(k).
7 M
4 (b) Obtain the DTFS coefficients of x(n)cos(6π13n+π6). Draw the magnitude and phase spectrum.
6 M
4 (c) Determine the time domain corresponding to the following spectra shown in Fig Q4(c)

7 M

5 (a) Let F{x1(t)}=x1(j?) and F{x2(t)}=x2(j?) then prove that Let F{x1(t)}=x1(jΩ) and F{x2(t)}=x2(jΩ)then prove thatF{x1(t).x2(t)}=12πλ=x1(jλ)x2(jΩλ)dλ
7 M
5 (b) Find the Fourier transform of the signal x(t) shown in Fig Q5(b)

6 M
5 (c) Find the inverse Fourier transform of X(jw)=jw(2+jw)2 using properties.
7 M

6 (a) Draw the frequency response of the system described by the impulse response h(t)-?(t)-2e-2t u(t).
7 M
6 (b) Find the Fourier transform of the periodic impulse train δTo(t)=k=δ(tkTo) and draw the spectrum.
8 M
6 (c) A signal x(t)=cos(10?t)+3cos(20?t) is ideally sampled with sampling period Ts. Find the Nyquist rate.
5 M

7 (a) Determine Z-transform of the following DTS and also find the ROC: i) x(n)=0.8nu(n1)ii) x(n)=u(n+1)+(12)nu(n)
8 M
7 (b) If x(n)zX(z), with ROC=R then prove that n.x(n)zzX(z)dz with ROCR.
6 M
7 (c) Determine the inverse Z-transform of the function X(z)=3z2+2z+1z2+3z+2
6 M

8 (a) Determine the impulse response of the sequence describe by y(n)-2y(n-1)+y(n-2)=x(n)+3x(n-3).
8 M
8 (b) Solve the following difference equation using unilateral z-transform. y(n)32y(n1)+12y(n2)=x(n), for n0, with initial conditions y(1)=4,y(2)=10, and i/p x(n)=(14)nu(n)
8 M
8 (c) Define stability and causality with respect to z-transform.
4 M



More question papers from Signals & Systems
SPONSORED ADVERTISEMENTS