Answer any one question from Q1 and Q2
1 (a)
If y1/m + y-1/m=2x prove that (x2−1)yn+2+(2n+1)xyn+1+(n2−m3)yn=0
7 M
1 (b)
Find the pedal equation for the curve
rinfin;=a∞ sin mθ+b∞ cos mθ.
rinfin;=a∞ sin mθ+b∞ cos mθ.
6 M
1 (c)
Derive an expression to find radius of curvature in Cartesian form.
7 M
2 (a)
Find the nth derivative of sin2x cos3x.
7 M
2 (b)
Show that the curves r=a(1+cos θ) and r=b (1-cos &theta) intersect at right angles.
6 M
2 (c)
Find the radius of curvature when x=a log (sec t + tan t) y=a sect.
7 M
Answer any one question from Q3 and Q4
3 (a)
Using McLaurin's series expand tan x upto the term containing x5.
7 M
3 (b)
Show that x∂u∂x+y∂u∂y=2ulogu wherelogu=x3+y33x+4y
6 M
3 (c)
Find the extreme values of x4+y4-2(x-y)2.
7 M
4 (a)
Evaluate lim
7 M
4 (b)
If u=x log xy where x3+y33xy=1 Find fu/dx.
6 M
4 (c)
If \ u=\dfrac {yz}{x}, \ v= \dfrac {xz}{y}, \ w=\dfrac {xy}{z}, \ find \ \dfrac {\partial (u,v,w)}{\partial (x,y,z)}
7 M
Answer any one question from Q5 and Q6
5 (a)
Find div \overrightarrow {F} and Curl \overrightarrow {F} where overrightarrow {F} = grad (x^3 + y^3 + z^3 - 3xyz)
7 M
5 (b)
Using differentiation under integral sign,
Evaluate \int^1_0 \dfrac {x^\alpha - } {\log x} dx (\alpha \ge 0) Hence find \int^1_0 \dfrac {x^3 -1} {\log x} dx
Evaluate \int^1_0 \dfrac {x^\alpha - } {\log x} dx (\alpha \ge 0) Hence find \int^1_0 \dfrac {x^3 -1} {\log x} dx
6 M
5 (c)
Trace the curve y2(a-x)=x3, a>0 use general rules.
7 M
6 (a)
if \ \overrightarrow {r} = xi + yj + zk \ and \ r=|\overrightarrow {r} | then prove that \nabla r^n = nr^{n-2} \overrightarrow{r}
7 M
6 (b)
Find the constants a, b, c such that \overrightarrow {F} = (x+y+az)i + (bx+2y-z)j + (x+cy + 2z)k is irrotational. Also find ϕ such that \overrightarrow {F} = \nabla \phi
6 M
6 (c)
Using differentiation under integral sign, evaluate int^\infty _0 e^{-\alpha x } \dfrac {\sin x } {x } dx
7 M
Answer any one question from Q7 and Q8
7 (a)
Obtain reduction formula for int^{1/2}_0 \cos^n x \ dx
7 M
7 (b)
Solve: (1+2xy \cos x^2 - 2xy) dx + (\sin x^2 - x^2) dy = 0.
6 M
7 (c)
A body originally at 80°C cools down to 60°C in 20 minutes, the temperature of the air being 40°C. What will be temperature of the body after 40 minutes from the original?
7 M
8 (a)
Evaluate \int^{2a}_0 x^2 \sqrt { 2ax - x^2 } dx
7 M
8 (b)
Solve: xy \left (1+x \ y^2 \right ) \dfrac {dy}{dx}= 1
6 M
8 (c)
Fid the orthogonal trajectories of the family of confocal conics \dfrac {x^2}{b^2}+ \dfrac {y^2}{b^2 + \lambda}= 1 where λ is parameter.
7 M
Answer any one question from Q9 and Q10
9 (a)
Solve by Gauss elimination method.
5x_1 + x_2 + x_3 + x_4 =4, \ x_1+7x_2 + x_3 + x_4 =12, \ x_1 + x_2 + 6x_3 + x_4 = -5, \ x_1 + x_2 + x_3 + 4x_4 = 6
5x_1 + x_2 + x_3 + x_4 =4, \ x_1+7x_2 + x_3 + x_4 =12, \ x_1 + x_2 + 6x_3 + x_4 = -5, \ x_1 + x_2 + x_3 + 4x_4 = 6
7 M
9 (b)
Diagonalize the matrix A= \begin{bmatrix}-19 &7 \\-42 &16 \end{bmatrix}
6 M
9 (c)
Find the dominant Eigen value and the corresponding Eigen vector of the matrix A= \begin{bmatrix}6 &-2 &2 \\-2 &3 &-1 \\2 &-1 &3 \end{bmatrix} by power method taking the initial Eigen vector (1,1,1)1.
7 M
10 (a)
Solve by L U decomposition method
x+5y+z=14, 2x+y+3z=14, 3x+y+4z=17
x+5y+z=14, 2x+y+3z=14, 3x+y+4z=17
7 M
10 (b)
Show that the transformation y1=2x1- 2x2-x3, y2=-4x1 + 5x2 + 3x3, y3= x1-x2-x3 is regular and find the inverse transformation.
6 M
10 (c)
Reduce the quadratic form 2x^2_1 + 2x^2 _2 + 2x^2_3 + 2x_1x_3 into canonical form by orthogonal transformation.
7 M
More question papers from Engineering Maths 1