1 (a)
Show that FIR filters are linear phase filters. Define group delay and phase delay.
8 M
1 (b)
find the response of the system given by difference equation y(n)-5y(n-1)+6y(n-2) = x(n) for (i) x(n) = ?(n) and (ii) x(n) = U(n)
6 M
1 (c)
Draw direct form - I and Direct form-II realization of the system given by
y(n)-3/4?y(n?1) + 1/8?y(n-2) = x(n) + 1/3?x(n-1)
y(n)-3/4?y(n?1) + 1/8?y(n-2) = x(n) + 1/3?x(n-1)
6 M
2 (a)
Derive Radix-2 Decimation in Time Fast Fourier Transform and draw its signal flow graph
10 M
2 (b)
Design FIR digital filter by using window method for the following specification : -
\[H\left(e^{j\omega{}}\right)=e^{-j3\omega{}}\ \ \ \ -\frac{3\pi{}}{4}\leq{}\omega{}\leq{}\frac{3\pi{}}{4}\]
\[H\left(e^{j\omega{}}\right)=0,\dfrac{3\pi{}}{4}\leq{}\left\vert{}\omega{}\right\vert{}\leq{}\pi{}\]
Use Hamming window of lenght = 7
\[H\left(e^{j\omega{}}\right)=e^{-j3\omega{}}\ \ \ \ -\frac{3\pi{}}{4}\leq{}\omega{}\leq{}\frac{3\pi{}}{4}\]
\[H\left(e^{j\omega{}}\right)=0,\dfrac{3\pi{}}{4}\leq{}\left\vert{}\omega{}\right\vert{}\leq{}\pi{}\]
Use Hamming window of lenght = 7
10 M
3 (a)
If Hd(ω)=1 for 0≤ f ≤ 800 Hz and
Hd (ω)=0 for f ≥ 800 Hz
Given that sampling frequency Fs= 5000Hz Design FIR filter for length M=5 using Bartiett window
Hd (ω)=0 for f ≥ 800 Hz
Given that sampling frequency Fs= 5000Hz Design FIR filter for length M=5 using Bartiett window
10 M
3 (b)
Find 8-point FFT of x(n)= { 1,2,2,2,1 } using signal flow graph of Radix- 2 Decimation in frequency FFT
10 M
4 (a)
Design a digital Butterworth filter satisfying the following constraints :
\[0.9=\left\{\begin{array}{l}\leq{}\left\vert{}H\left(e^{j\omega{}}\right)\right\vert{}\leq{}1\\ \ \ \ \ \ \ \ \&0\leq{}\omega{}\leq{}\frac{\pi{}}{2} \\\leq{}\left\vert{}H\left(e^{j\omega{}}\right)\right\vert{}\leq{}0.2\ \ \ \ \ \\&\frac{3\pi{}}{4}\leq{}\omega{}\leq{}\pi{}\end{array}\right.\]
with sampling period T=1 sec, use Bilinear transformation method.
\[0.9=\left\{\begin{array}{l}\leq{}\left\vert{}H\left(e^{j\omega{}}\right)\right\vert{}\leq{}1\\ \ \ \ \ \ \ \ \&0\leq{}\omega{}\leq{}\frac{\pi{}}{2} \\\leq{}\left\vert{}H\left(e^{j\omega{}}\right)\right\vert{}\leq{}0.2\ \ \ \ \ \\&\frac{3\pi{}}{4}\leq{}\omega{}\leq{}\pi{}\end{array}\right.\]
with sampling period T=1 sec, use Bilinear transformation method.
12 M
4 (b)
State and derive Geortzel algorithm, also state its application
8 M
5 (a)
For the analog tansfer function \[H\left(s\right)=\frac{3}{\left(s+2\right)\left(s+3\right)}\\] Determine H(z) with sampling period T=0.1 sec using
(i) Impulse Invariant method
(ii) Bilinear Transformation method
(i) Impulse Invariant method
(ii) Bilinear Transformation method
10 M
5 (b)
Describe the application Geortzel algorithm in dual tone multi- frequency detection.
10 M
6 (a)
With a suitable block diagram describe sub-band coding of speech signals.
10 M
6 (b)
With a neat diagram describe frequency sampling realization of FIR filters.
10 M
7 (a)
Explain up sampling by non-integer factor, with a neat diagram and waveforms
10 M
7 (b)
Explain the application of DTSP in adaptive echo cancellation.
5 M
7 (c)
Describe the concept of digital resonator
5 M
More question papers from Discrete Time Signal Processing