1 (a) (i)
Determine current through 10Ω resistance :

3 M

1 (a) (ii)
Determine current through 10Ω resistance :

2 M

1 (b)
Find Laplace transform of signal :

5 M

1 (c)
Find V

_{C1}(f) when switch S is closed at t=0, with initial conditions :
5 M

1 (d)
Determine the Z parameters of the network

5 M

1 (e)
"Find the domain response using graphical & partial fraction method & prove that results are matching

\[ F \left(S \right)=\frac{3s}{\left(s+6 \right)\left(s+2 \right)} \] "

\[ F \left(S \right)=\frac{3s}{\left(s+6 \right)\left(s+2 \right)} \] "

5 M

2 (a) (i)
State and explain significance of initial & find value theorems. (Network Analysis)

5 M

2 (a) (ii)
Derive the equation for Laplace transform of following functions :

(i) Unit Ramp function

Unit impulse function

(i) Unit Ramp function

Unit impulse function

5 M

2 (b)
Determine R

:

_{L}for maximum power transfer & maximum power transferred P_{L}:

10 M

3 (a) (i)
In case of series R-L circuit excited by DC supply (V) derive equation for transient current I

_{L}with initial conditions.
5 M

3 (a) (ii)
Define transmission line parameters in case of two port network. Also derive the condition of symmetry.

5 M

3 (b)
"The driving point impedance of a one port network function is as follows. Obtain Foster 1 and Foster 2 form of equivalent circuit.

\[ Z\left(s \right)=\frac{6\left(s^2+4 \right)s}{\left(s^2+1 \right)\left(s^2+64 \right)} \]"

\[ Z\left(s \right)=\frac{6\left(s^2+4 \right)s}{\left(s^2+1 \right)\left(s^2+64 \right)} \]"

10 M

4 (a)
Explain the concept of poles & zeros. Using suitable example plot pole-zero plot & hence explain how to use such plot to get time domain response for network function.

10 M

4 (b)
"Realise given Y

\[ Y\left(s \right)=\frac{s^4+6s^2+4}{2s^3+4s} \] "

_{LC}(S) into cauer 2 form\[ Y\left(s \right)=\frac{s^4+6s^2+4}{2s^3+4s} \] "

10 M

5 (a) (i)
"Check the following function for positive real function \[
(i)
Z\left(s
\right)=\frac{6\left(s^2+4
\right)s}{\left(s^2+1
\right)\left(s^2+64
\right)}
\]

\[ \left(ii \right) Z\left(s \right)=\frac{s\left(s^2+3 \right)}{\left(s^2+1 \right)} \] "

\[ \left(ii \right) Z\left(s \right)=\frac{s\left(s^2+3 \right)}{\left(s^2+1 \right)} \] "

5 M

5 (a) (ii)
"Check the following polynomials for Hurwitz

\[ \left(1 \right) P\left(s \right)=s^5+4s^4+3s^3+s^2+4s+1 \\ \left(2 \right) P\left(s \right)=s^4+4s^2+8 \]"

\[ \left(1 \right) P\left(s \right)=s^5+4s^4+3s^3+s^2+4s+1 \\ \left(2 \right) P\left(s \right)=s^4+4s^2+8 \]"

5 M

5 (b) (i)
Obtain ABCD parameters for following two port networks. : (1)

5 M

5 (b) (ii)

5 M

6 (a) (i)
Derive network equilibrium equation on loop current basis (KVL).

5 M

6 (a) (ii)
For the network, get incidence matrix & tieset matrix :

5 M

6 (b)
"For the network determine \[
i_1, i_2, \frac{di_1}{dt}, \frac{di_2}{dt}, \frac{d^2i_1}{dt^2},
\frac{d^2i_2}{dt^2}
\]

for t= 0

"

for t= 0

^{+}. The switch is closed at t=0. :"

10 M

7 (a) (i)
Determine current through 10Ω resistance for the network :

5 M

7 (a) (ii)
For the network, Switch S is closed at t=0 with initial conditions as shown. Determine V

_{R}(t)
5 M

7 (b)
Using Superposition theorem, determine current through 10 Ω resistance. :

10 M

More question papers from Circuits and Transmission Lines