1 (a)
Check for Hurwitz polynominal
(i) Q(s)=s5+s3+s1
(ii) Q(s)=s4+6s3+8s2+10
(i) Q(s)=s5+s3+s1
(ii) Q(s)=s4+6s3+8s2+10
5 M
1 (b)
Obtain s-domain (Laplace Transform) equivalent circuit diagram of an inductor and capacitor with initial conditions
5 M
1 (c)
Obtain Transmission parameter in terms of 'z' parameters
5 M
1 (d)
List the types of damping in a series R-L-C circuit and mention the condition for each damping
5 M
2 (a)
Obtain prove supplied by dependent voltage source
10 M
2 (b)
Compare and obtain Foster form I and form II using a example of RC ckt
\[Z\left(s\right)=\frac{\left(S+1\right)\left(s+6\right)}{s\left(s+4\right)\left(s+8\right)}\]
Also give a example of L-C anr R-L ckt
\[Z\left(s\right)=\frac{\left(S+1\right)\left(s+6\right)}{s\left(s+4\right)\left(s+8\right)}\]
Also give a example of L-C anr R-L ckt
10 M
3 (a)
Obtain i1(0+), i2(0+) snd i3(0+)
10 M
3 (b)
Design a short circuit strub match for ZL=450-600 j(?)
for a line of ZO=300(?)
and f=20 MHz
use Smith charts.
for a line of ZO=300(?)
and f=20 MHz
use Smith charts.
10 M
4 (a)
Obtain hybrid parameters of the intercorrected 'Two' 2-port network
8 M
4 (b)
Check for p.r.f. test
\[F\left(s\right)=\frac{2s^2+2s+1}{s^3+2s^2+s+2}\]
\[F\left(s\right)=\frac{2s^2+2s+1}{s^3+2s^2+s+2}\]
6 M
4 (c)
Compare Cauer Form I and Cauer Form II of a LC Network
\[Z\left(s\right)=\frac{2\left(s^2+1\right)\left(s^2+4\right)}{s\left(s^2+2\right)}\]
\[Z\left(s\right)=\frac{2\left(s^2+1\right)\left(s^2+4\right)}{s\left(s^2+2\right)}\]
6 M
5 (a)
Obtain i(t) for t>0
Where r(t) is a ramp signal
8 M
5 (b)
Derive an expression for characteristics equation of atransmission line. Also obtain ? ? and y of the line.
6 M
5 (c)
Obtain Vx using some shifiting and source transmission technique
6 M
6 (a)
Obtain Thevenin's equivalent circuit :-
Hence find current flowing through 10? load
8 M
6 (b)
Obtain Z11(s), Z21(s), G21(s) for the Ladder Network
8 M
6 (c)
Explain various types of filters
4 M
More question papers from Circuit Theory