1(a)
Define with example Moore and Mealy machine.
5 M
1(b)
Find the equivalent DFA accepting the regular language defined by right linear grammar given as:
S\(\rightarrow\)aA|bB
A\(\rightarrow\)aA|bC|a
B\(\rightarrow\)aB|b
C\(\rightarrow\)bB
S\(\rightarrow\)aA|bB
A\(\rightarrow\)aA|bC|a
B\(\rightarrow\)aB|b
C\(\rightarrow\)bB
5 M
1(c)
State and prove pumping lemma theorem for regular languages.
5 M
1(d)
Differentiate between Deterministic PDA and Non-deterministic PDA.
5 M
2(a)
Design a finite state machine to determine whether a ternary number base 3 is divisible by 5.[Hint:\(\sum\)={0,1,2}]
10 M
2(b)
Design a Mealy machine for the languages (0+1)* (00+11)and convert it to a Moore machine.
10 M
3(a)
Convert the following NFA with ε moves to DFA:
10 M
3(b)
Let G be the grammar G={(S,X),{a,b},P,S}where production are
S\(\rightarrow\)aSX|b
X\(\rightarrow\)Xb|a
Find:
(i)Leftmost derivation (ii) Rightmost derivation and
Parse tree for the string "aababa".
10 M
4(a)
Design Turing machine for the language L={anbn|n>=1}
10 M
4(b)
Design a Turing machine to compare the binary numbers m and n such that if (m>n) output is G (m=n) output is E.
10 M
5(a)
List and explain decision properties of regular language.
Explain the test for checking emptiness of a regular languages.
Explain the test for checking emptiness of a regular languages.
10 M
5(b)
Construct left linear and right linear grammar for the regular expression:
(((01+10)*11)00)*
(((01+10)*11)00)*
10 M
6(a)
Construct a PDA equivalent to following grammar:
S\(\rightarrow\)OBB
B\(\rightarrow\)OS|1S|O
and show acceptance of 0104
by the PDA.
S\(\rightarrow\)OBB
B\(\rightarrow\)OS|1S|O
and show acceptance of 0104
by the PDA.
10 M
6(b)
Reduce the following grammar to Greibach Normal form.
(i)S\(\rightarrow\)AB
A\(\rightarrow\)BSB|BB|b
B\(\rightarrow\)a
(ii)S\(\rightarrow\)01S|01
S\(\rightarrow\)10S|10
S\(\rightarrow\)00|^ (^ means Null (E))
(i)S\(\rightarrow\)AB
A\(\rightarrow\)BSB|BB|b
B\(\rightarrow\)a
(ii)S\(\rightarrow\)01S|01
S\(\rightarrow\)10S|10
S\(\rightarrow\)00|^ (^ means Null (E))
10 M
Any Four
7(a)
Write short notes on(any four)
Post Correspondence problem
Post Correspondence problem
5 M
7(b)
Chomsky Hierachy
5 M
7(c)
Universal turing machine
5 M
7(d)
Recursive and Recursively enumerable languages
5 M
7(e)
Classes of complexity.
5 M
More question papers from Automata Theory