Find eA, If A =\(\begin{bmatrix} 3/2 & 1/2\\ 1/2& 3/2 \end{bmatrix}\\\)
Consider the following problem:
maximise Z=2x1-2x1 - 2x2 + 4x3-5x4
Subject to x1 + 4x2-2x3 + 8x4 \(\le\) 2
-x1 +2x2+3x3+4x4\(\le
\)1 and x1,x2,x3,x4 \(\ge\)0.
DETERMINE:
- all basic solution.
- all feasible basic solutions.
- optimal feasible basic solution.
If f(z) = u+iv is analytic and \(u+v =\dfrac{2sin2x}{e^{2y}+e^{-2y}-2cos2x}\\\)find f(z)
Compute A9-6A8+10A7-3A6+A+I
where,A =\( \begin{bmatrix} 1 &2 & 3\\ -1& 4 & 1\\ 1&0 & 3 \end{bmatrix}\\\)
\(y\le0\)Solve the following LPP by simplex method-
Minimise \( Z =x_1-3x_2+3x_3\)
subject to \(3x_1-x_2+2x_3\le7\)
\(2x_1+4x_2\ge-12\)
\( -4x_1+3x_2+8x_3\le10\)
\( x1,x2,x3 \ge0\)
Show that A =\(\begin{bmatrix} -6& -2 &2 \\ -2& 3 &-1 \\ 2& -1 &3 \end{bmatrix}\\\) is derogatory and find its minimal polynomial.
Slove the following LPP by Big M-method -
Minimize Z =\( 2x_1+x_2\)
subject to
\(3x_1+x_2 =3\\[2ex] 4x_1+ 3x_2\ge 6\\[2ex] x_1+2x_2 \le3 \\[2ex]and\space x1,x2 \ge0 \).
Show that \(f(z) =\sqrt{|x y|}\)​ ​​ ​ is not analytic at the origin although Cauchy-Riemann equation are satisfied at that point.
Evaluate \(\int_{c}\dfrac{z+6}{z^{2}-4}dz\\\)
where c is the circle
- |z| =1,
- |z+2|=1.
Show that the matrix A =\(\begin{bmatrix} 1 & -6 &-4 \\ 0 & 4 & 2\\ 0 & -6 & -3 \end{bmatrix}\\\) is similar to a diagonal matrix.also find the transforming matrix and the diagonal matrix.
Using Duality solve the following LPP-
Minimise z =4x1 +3x2 +6x3
Subject to x1+x3\(\ge\) 2
x2 +x3\(\ge\)5
and x1,x2,x3\(\ge0\)
Use the dual simplex method to solve the following LPP-
Maximize Z =-3x1-2x2
Subject to x1+ x2 \(\ge\) 1
x1+ x2 \(\le\) 7
x1+ 2x2 \(\le\)10
x2 \(\le\)3
and x1, x2 \(\ge\)0
Evaluate \(\int_{0}^{2\pi}\dfrac{d\theta}{5+3sin\theta}\\\)
Find the characteristics equation of the matrix\( \begin{bmatrix} 1 &2 & -2\\ -1& 3&0 \\ 0& -2 & 1 \end{bmatrix}\\\)and verify that is satisfied by A and hence ,obtain A-1
Obtain Taylor's or Laurent's series for the function-
\(f(z) =\dfrac{1}{(1+z^{2})(z+2)} for(i) \space 1<|z|<2 \space and (ii)\space |z| >2.\)
Obtain the relative maximum or minimum (if any) of the function
\(z =x_{1} +2x_{3}+x_{2}x_{3}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}.\\\)
Evaluate\( \int_{c}\dfrac{z^{2}}{(z-1)^{2}(z-2)}dz\\\) where c is the circle |z| =2.5
Find the bilinear transformation which maps the point 2,;-2 onto the points 1,i,-1.
Using the method of Lagrangian multipliers solve the following problem
Optimise Z =4x12+2x22+x32-41x2
Subjected to x1+x2+x3 =15
2x1-x2+2x3=20
x1,x2,x3\(\ge\)0.
Verify Laplace's equation for \( u =\left(r+\dfrac{a^{2}}{r}\right)cos\theta\).also find v and f(z).