State Cauchy-Schwartz inequality and hence show that \[ (x^{2}+y^{2}+z^{2})^{1/2} \ge\dfrac{1}{13}(3x+4y+12z),x,y,z\] are positive.
Show that the matrix \(A=\begin{bmatrix} 5 &-6 &-6 \\ -1&4 &2 \\ 3 &-6 &-4 \end{bmatrix}\)is Derogatory.
Using Rayleigh-Ritz method,find an appropriate solution for the extremal of the functional \[ I \left [ y(x) \right ]=\int_{0}^{1}\left [ xy+\dfrac{1}{2}(y^{'})^{2}\right]dx \] subject to y(0)=y(1)=0.
Is the matrix \(A=\begin{bmatrix} 2 & 1 &1 \\ 1& 2 &1 \\ 0 & 0 & 1 \end{bmatrix}\)diagonalizable.If so find diagonal form and transforming matrix.
Find f(3),f'(1+i),f"(1-i),if f(a) =\(\int _{c}\dfrac{3x^{2}+11z+7}{z-a}dz \),c:|z|=2
Evaluate\( \int_{0}^{\infty}\dfrac{x^{3}sin x}{(x^{2}+z^{2})^{2}}\)using contour integration.
Find the singular value decomposition of the matrix A = \(\begin{bmatrix}1 & 1\\ 1 & 1\\ 1 &-1\end{bmatrix}\)