Loading [MathJax]/jax/output/CommonHTML/jax.js




MU Electronics Engineering (Semester 3)
Applied Mathematics - 3
December 2012
Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


1 (a) A=17 [263632326]
Show that-
(i) |A| = 1
(ii) .adj A=A'
5 M
This Qs paper appeared for Applied Mathematics - 3 of Electronics & Telecomm. (Semester 3)
1 (b) Show that the Fourier cosine transform of-
f(x)= 1x is 1s
5 M
1 (c) Show that
L1 tan1(as)= sin?(at)t 
5 M
1 (d) Show that
0etsin(t2)sinh (3t2) dt= 32
5 M

2 (a) If z is any zero complex number show that -
[A=frac{1}{sqrt{2} vert{}zvert{}}left[egin{array}{cc}z
6 M
2 (b) Find the Fourier series expansion of f(x)=x2 in [0,2?]
6 M
2 (c) Show that
0sin2t+sin3ttetdt= 3π4
8 M

3 (a) Find the half range sine series for f(x) = ?x - x2 in [ 0, ? ]. Hence find n=11( 2n1)6
6 M
3 (b) Show that
L(cos at cosh at)=s3s4+ 4a4
6 M
3 (c) if a,b,c are distinct real numbers such that a+b+c ? 0. Show that the vectors (a,b,c), (b,c,a) and (c,a,b) are linearly independent.
8 M

4 (a) Find Fourier series expansion of -
\[ f(x)=\left\{\begin{matrix}x &-?
6 M
4 (b) Find the all possible ranks of the matrix
A=[ k333k333k]
where k is any real number
6 M
4 (c) Find
(i) L1 se?ss2+3s+2; (ii) L[t.H(t4)+t2 ?(t4)]
8 M

5 (a) Solve the system of equation using the Gauss- Seidel method :
3x+4y+6z=6
2x+5y+4z=11
2x+y+z+=5
6 M
5 (b) Find  L1s(s2+ 2)2using convolution theorem
6 M
5 (c) Show that
z[cos (α k)]= z2zcosαz22(cosα)z+1
8 M

6 (a) Find Lf(t) where f(t) = cos t, 0 < t < ?
sin t, sin t ? ?
Using the Heaviside unit step function.
6 M
6 (b) Find Z11(z2)(z3)for 2<|z|<3 using residues.
6 M
6 (c) Express the matrix
A=[sinα0sinα(sin α) (sinβ)cosβ(sinβ)(cosα)(cosβ)(sinα)sinβ(cosα)(cosβ)]
as a product of two orthogonal matrices.
8 M

7 (a) Solve the DE  y+t0y dt=1 etusing Laplace transforms.
6 M
7 (b) if 0 ? x ? ? show that-
x2= 2?[(π21413)sinx (π22) sin2x      + (π23433) sin3x+.....]
6 M
7 (c) Show that {cos nx}n?1 is an orthogonal family of functions in [ -? , ? ]. Also find the corresponding orthonormal set.
8 M



More question papers from Applied Mathematics - 3
SPONSORED ADVERTISEMENTS