1 (a)
A=17 [2636−3232−6]
Show that-
(i) |A| = 1
(ii) .adj A=A'
Show that-
(i) |A| = 1
(ii) .adj A=A'
5 M
This Qs paper appeared for Applied Mathematics - 3 of Electronics & Telecomm. (Semester 3)
1 (b)
Show that the Fourier cosine transform of-
f(x)= 1√x is 1√s
f(x)= 1√x is 1√s
5 M
1 (c)
Show that
L−1 tan−1(as)= sin?(at)t
L−1 tan−1(as)= sin?(at)t
5 M
1 (d)
Show that
∫∞0e−tsin(t2)sinh (√3t2) dt= √32
∫∞0e−tsin(t2)sinh (√3t2) dt= √32
5 M
2 (a)
If z is any zero complex number show that -
[A=frac{1}{sqrt{2} vert{}zvert{}}left[egin{array}{cc}z
[A=frac{1}{sqrt{2} vert{}zvert{}}left[egin{array}{cc}z
6 M
2 (b)
Find the Fourier series expansion of f(x)=x2 in [0,2?]
6 M
2 (c)
Show that
∫∞0sin2t+sin3ttetdt= 3π4
∫∞0sin2t+sin3ttetdt= 3π4
8 M
3 (a)
Find the half range sine series for f(x) = ?x - x2 in [ 0, ? ]. Hence find ∞∑n=11( 2n−1)6
6 M
3 (b)
Show that
L(cos at cosh at)=s3s4+ 4a4
L(cos at cosh at)=s3s4+ 4a4
6 M
3 (c)
if a,b,c are distinct real numbers such that a+b+c ? 0. Show that the vectors (a,b,c), (b,c,a) and (c,a,b) are linearly independent.
8 M
4 (a)
Find Fourier series expansion of -
\[ f(x)=\left\{\begin{matrix}x &-?
\[ f(x)=\left\{\begin{matrix}x &-?
6 M
4 (b)
Find the all possible ranks of the matrix
A=[ k−3−3−3k−3−3−3k]
where k is any real number
A=[ k−3−3−3k−3−3−3k]
where k is any real number
6 M
4 (c)
Find
(i) L−1 se−?ss2+3s+2; (ii) L[t.H(t−4)+t2 ?(t−4)]
(i) L−1 se−?ss2+3s+2; (ii) L[t.H(t−4)+t2 ?(t−4)]
8 M
5 (a)
Solve the system of equation using the Gauss- Seidel method :
3x+4y+6z=6
2x+5y+4z=11
2x+y+z+=5
3x+4y+6z=6
2x+5y+4z=11
2x+y+z+=5
6 M
5 (b)
Find L−1s(s2+ 2)2using convolution theorem
6 M
5 (c)
Show that
z[cos (α k)]= z2−zcosαz2−2(cosα)z+1
z[cos (α k)]= z2−zcosαz2−2(cosα)z+1
8 M
6 (a)
Find Lf(t) where f(t) = cos t, 0 < t < ?
sin t, sin t ? ?
Using the Heaviside unit step function.
sin t, sin t ? ?
Using the Heaviside unit step function.
6 M
6 (b)
Find Z−11(z−2)(z−3)for 2<|z|<3 using residues.
6 M
6 (c)
Express the matrix
A=[sinα0sinα(sin α) (sinβ)cosβ−(sinβ)(cosα)−(cosβ)(sinα)sinβ(cosα)(cosβ)]
as a product of two orthogonal matrices.
A=[sinα0sinα(sin α) (sinβ)cosβ−(sinβ)(cosα)−(cosβ)(sinα)sinβ(cosα)(cosβ)]
as a product of two orthogonal matrices.
8 M
7 (a)
Solve the DE y+∫t0y dt=1− e−tusing Laplace transforms.
6 M
7 (b)
if 0 ? x ? ? show that-
x2= 2?[(π21−413)sinx− (π22) sin2x + (π23−433) sin3x+.....]
x2= 2?[(π21−413)sinx− (π22) sin2x + (π23−433) sin3x+.....]
6 M
7 (c)
Show that {cos nx}n?1 is an orthogonal family of functions in [ -? , ? ]. Also find the corresponding orthonormal set.
8 M
More question papers from Applied Mathematics - 3