MORE IN Applied Mathematics 3
MU Information Technology (Semester 3)
Applied Mathematics 3
December 2015
Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary

1 (a) Find Laplace of {t5 cosht}.
5 M
1 (b) Find Fourier series for f(x)=t-x2 in (-1, 1).
5 M
1 (c) Find a, b, c, d, e, if,
f(z)=(ax4+bx2y2+cy4+dx2-2y2)+i (4x3-exy3+4xy) is analytic.
5 M
1 (d) Prove that $$\Delta = \left ( \dfrac {1}{r} \right ) = \dfrac {r}{r^3}$$
5 M

2 (a) If f(z)= u + iv is analytic and $$u+v= \dfrac{2\sin 2x}{e^{2y}+ e^{-2y}-2 \cos 2x}$$ Find f(z).
6 M
2 (b) Find inverse Z-transform of $$f(z)= \dfrac {z+2}{z^2 - 2z+1}$$ for |z|>1.
6 M
2 (c) Find Fourier series for $$f(x) = \sqrt{1-\cos x }\text{ in } (0, 2\pi)$$ Hence, deduce that $$\dfrac {1}{2} = \sum^\infty_1 \dfrac {1}{4n^2 - 1}$$
8 M

3 (a) Find $$L^{-1} \left { \dfrac {1}{(s-3)+(s+3)} \right }$$ using Convolution theorem.
6 M
3 (b) Prove that f1(x)=1, f2(x)=x, f3(x)=(3x2-1)/2 are orthogonal over (-1, 1).
6 M
3 (c) Verify Green's theorem for $$\int_c \overline {F} \cdot \overline{dr} \text { where } \overline {F} = (x2-y2)i+(x+y)j$$ and c is the triangle with vertices (0, 0), (1, 1), (2, 1).
8 M

4 (a) Find Laplace Transform of f(t)=|sinpt|, t≥0.
6 M
4 (b) Show that F = (ysinz-sinx)i+(xsinz+2yz)j+(xycosz+y2)k is irrotational. Hence, find its scalar potential.
6 M
4 (c) Obtain Fourier expansion of \begin {align*} f(x)&= x+ \dfrac {\pi}{2} \text { where } -\pi < x < 0 \\ &= \dfrac{\pi}{2} - x \text { where }0< x<\pi \end{align*}
Hence, deduce that $$i) \ \dfrac {\pi^2} {8} = \dfrac {1}{1^2} + \dfrac {1}{3^2}+ \dfrac {1}{5^2}+ \cdots \ \cdots \\ ii) \ \dfrac {\pi^4}{96} = \dfrac {1}{1^4} + \dfrac {1}{3^4} + \dfrac {1}{5^4} + \cdots \ \cdots$$
8 M

5 (a) Using Gauss Divergence theorem to evaluate $$\iint_s \ \overline{N} \cdot \overline {F}ds \text{ where } \overline {F} = 4xi - 2y^2 j+ z^k$$ and S is the region bounded by x2 + y2 = 4, z=0, z=3.
6 M
5 (b) Find Z{2k cos (3k+2)}, k≥0.
6 M
5 (c) Solve (D2+2D+5)y=e-t sint, with y(0)=0 and y'(0)=1.
8 M

6 (a) Find $$L^{-1} \left { \tan^{-1} \left ( \dfrac {2}{s^2} \right ) \right }$$
6 M
6 (b) Find the bilinear transformation which maps the points 2, i, -2 onto points 1, i, -1 by using cross ratio property.
6 M
6 (c) Find Fourier Sine integral representation for $$f(x) = \dfrac {e^{-ax}}{x}$$
8 M

More question papers from Applied Mathematics 3