1(a)
Solve \[\left [ \log \left ( x^2+y^2 \right )+\frac{2x^2}{x^2+y^2}\right ]dx+\left ( \frac{2xy}{x^2+y^2} \right )dy=0\]
4 M
1(b)
Solve \[\left ( D^4+2D^2+1 \right )y=0\]
3 M
1(c)
Evaluate \[\int_{0 }^{\infty }e^{-x^5}dx\]
3 M
1(d)
Express the following integral in polar co-ordinates: \[\int_{0}^{\frac{a}{\sqrt{2}}}\int_{y}^{\sqrt{a^2-y^2}}f(x,y)dx dy\]
4 M
1(e)
Prove that \[E=1+\Delta =e^{hD}\]
3 M
1(f)
Evaluate \[1=\int_{0}^{\frac{\pi }{2}}\int_{\frac{\pi }{2}}^{\pi }\cos \left ( x+y \right )dx dy\]
3 M
2(a)
Solve \[\frac{dy}{dx}+\frac{y}{x}\log y=\frac{y}{x^2}\left ( \log x \right )^2\]
6 M
2(b)
Change the order of integration and evaluate \[1=\int_{0}^{2}\int_{\sqrt{2y}}^{2}\frac{x^2dxdy}{\sqrt{\left ( x^4-4y^2 \right )}}\]
6 M
2(c)
Evaluate \( \int_{0}^{\frac{\pi }{2}}\frac{dx}{1+a\sin ^2x} \)/ and duduce that \[ \int_{0}^{\frac{\pi }{2}}\frac{\sin ^2xdx}{\left ( 3+a\sin ^2x \right )^2}=\frac{\pi\sqrt{3} }{96}\]
6 M
3(a)
Evaluate \[\int_{0}^{a}\int_{0}^{x}\int_{0}^{x+y}e^{x+y+2}dxdydz\]
6 M
3(b)
If mass per unit area varies as the square of the ordinate of a point, find the mass of a lamina bounded by the cycloid \( y=a\left ( 1-\cos \theta \right ),x=a\left ( \theta +\sin \theta \right ) \)/ and the ordinates from the two cups and the tangents at the vertex.
6 M
3(c)
Solve \[\left ( 2x+1 \right )^2\frac{d^2y}{dx^2}-6\left ( 2x+1 \right )\frac{dy}{dx}+16y=8(2x+1)^2\]
8 M
4(a)
Show that the length of the are of the parabola y2=4ax cut off by the line \[3y=8x \ \ \text{is}\ \ a\left [ \log 2+\frac{15}{16} \right ]\]
6 M
4(b)
Solve \[\frac{d^3y}{dx^3}-7\frac{dy}{dx}-6y=\cos x\cosh x\]
6 M
4(c)
Using fourth order Runge-Kutta method, find u(0,4) of the initial value problem u'=2tu2, u(0)=1 take h =0.2.
8 M
5(a)
Use method of variation of parameters to solve \[\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=e^{2x}x^2\]
6 M
5(b)
Using Taylor's series method, obtain the solutions of \[\frac{d^y}{dx}3x+y^2, y(0)=1\] Find the value of y for x = 0.1 correct to four decimal places
6 M
5(c)
Find the value of the integral \(\int_{0}^{1}\frac{x^2}{1+x^3}dx \)/ by taking h=0.2, using
i) Trapezoidal Rule ii) Simpson's 1/3 Rule. Compare errors with the exact value of the integral
i) Trapezoidal Rule ii) Simpson's 1/3 Rule. Compare errors with the exact value of the integral
8 M
6(a)
A condenser of capacitance C is charged through a resistance R by a steady voltage. The charge Q satisfies the DE \(R \frac{dQ}{dt}+\frac{Q}{c}=V \)/ If the plate is chargeless find the charge and the current at time 't'
6 M
6(b)
Evaluate \( \iint \frac{\left ( x^2+y^2 \right )^2}{x^2y^2}dxdy\)/ over the region common to \( x^2+y^2-ax=0 \)/ and \( x^2+y^2-by=0, a>0, b>0?\)/
6 M
6(c)
Find the volume common to the right circular cylinder \[x^2+y^2=a^2 \text{and}\ \ x^2+z^2=a^2\]
8 M
More question papers from Applied Mathematics 2