1(a)
Express the 31+i−12−i+11−i/ in the form of a+ib.
6 M
1(b)
Find the cube roots of 1-i.
7 M
1(c)
Prove that (1+cosθ+isinθ1+cosθ−isinθ)n=cosnθ+isinnθ.
7 M
2(a)
Find the nth derivative of eaxcos(bx+c).
7 M
2(b)
Find the nth derivative of x(x−1)(2x+3).
6 M
2(c)
If y=acos(logx)+bsin(logx)/ prove that x2yn+2+(2n+1)xyn+1+(n2+1)yn=0./
7 M
3(a)
With usual notations P.T tanθ=rdθdr.
6 M
3(b)
Find the angle between the pairs of curves r=alogθ r=alogθ.
7 M
3(c)
Find the Podal equation to the curve r=a(1+sinθ).
7 M
4(a)
State and prove Euler's theorem of Homogenous functions.
6 M
4(b)
If u=(x-y, y-z, z-x) P.T ∂u∂x+∂u∂y+∂u∂z=0.
7 M
4(c)
If u=tan−1x+tan−1y, V=x+y1−xy S.T∂(u,v)∂(x,y)=0./
7 M
5(a)
Obtain the Reduction formula for ∫sinmx cosnx dx./ Where m, n are positive integers.
7 M
5(b)
Evaluate ∫21∫2−y0xy dx dy.
6 M
5(c)
Evaluate ∫30∫20∫30 (x+y+z)dz dx dy.
7 M
6(a)
Prove that⌈(12)=√π.
6 M
6(b)
Prove that ∫∞0x2e−n4∫∞0e−x5 dx=π8√2.
7 M
More question papers from Advanced Maths 1