Loading [MathJax]/jax/output/CommonHTML/jax.js




Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


1(a) Express the 31+i12i+11i/ in the form of a+ib.
6 M
1(b) Find the cube roots of 1-i.
7 M
1(c) Prove that (1+cosθ+isinθ1+cosθisinθ)n=cosnθ+isinnθ.
7 M

2(a) Find the nth derivative of eaxcos(bx+c).
7 M
2(b) Find the nth derivative of x(x1)(2x+3).
6 M
2(c) If y=acos(logx)+bsin(logx)/ prove that x2yn+2+(2n+1)xyn+1+(n2+1)yn=0./
7 M

3(a) With usual notations P.T tanθ=rdθdr.
6 M
3(b) Find the angle between the pairs of curves r=alogθ  r=alogθ.
7 M
3(c) Find the Podal equation to the curve r=a(1+sinθ).
7 M

4(a) State and prove Euler's theorem of Homogenous functions.
6 M
4(b) If u=(x-y, y-z, z-x) P.T ux+uy+uz=0.
7 M
4(c) If u=tan1x+tan1y,  V=x+y1xy  S.T(u,v)(x,y)=0./
7 M

5(a) Obtain the Reduction formula for sinmx  cosnx  dx./ Where m, n are positive integers.
7 M
5(b) Evaluate 212y0xy  dx  dy.
6 M
5(c) Evaluate 302030  (x+y+z)dz  dx  dy.
7 M

6(a) Prove that(12)=π.
6 M
6(b) Prove that 0x2en40ex5  dx=π82.
7 M



More question papers from Advanced Maths 1
SPONSORED ADVERTISEMENTS