GTU Computer Engineering (Semester 3)
Advanced Engineering Mathematics
December 2016
Total marks: --
Total time: --
INSTRUCTIONS
(1) Assume appropriate data and state your reasons
(2) Marks are given to the right of every question
(3) Draw neat diagrams wherever necessary


1(10) Give the differential equation of the orthogonal trajectory of the family of circles x2+y2=a2.x2+y2=a2.
1 M
1(11) Find the Wronskian of the two function sin2x and cos2x.
1 M
1(12) Solve (D2+6D+9)x=0;D=ddt.(D2+6D+9)x=0;D=ddt.
1 M
1(13) To solve heat equation ut=C22ux2ut=C22ux2/ how many initial and boundary conditions are required.
1 M
1(14) From the partial differential equations from z = (x+at) +g(x-at).
1 M
1(2) State relation between beta and gamma function.
1 M
1(3) Define Heaviside's unit step function.
1 M
1(4) Define Laplace transform of f(t),t≥0.
1 M
1(5) Find Laplace transform of t12.t12.
1 M
1(6) Find L{Sinatt},  given that L{Sintt}=tan1{1s}.L{Sinatt},  given that L{Sintt}=tan1{1s}./
1 M
1(7) Find the continuous extension of the function f(x)=x2+x2x21 to  x=1f(x)=x2+x2x21 to  x=1
1 M
1(8) Is the function f(x)=1xf(x)=1x/ continous on [-1, 1]? Give reason.
1 M
1(9) Solve dydx=e3x2y+x2e2y.dydx=e3x2y+x2e2y.
1 M
1(a) Find ⌈(12).(12).
1 M

2(a) Solve:(x+1)dydxy=e3x(x+1).(x+1)dydxy=e3x(x+1).
3 M
2(b) Solve: dydx+ycosx+siny+ysinx+xcosy+x=0dydx+ycosx+siny+ysinx+xcosy+x=0
4 M
Solve any one question.Q2(c) &Q2(d)
2(c) Fin the series solution of d2ydx2+xy=0.d2ydx2+xy=0.
7 M
2(d) Find the general solution of 2x2y+xy+(x21)y=02x2y′′+xy+(x21)y=0/ by using frobenius method.
7 M

solve any one question Q.3(a,b,c) &Q4(a,b,c)
3(a) Solve : (D33D2+9D27)y=cos3x.(D33D2+9D27)y=cos3x.
3 M
3(b) Solve : x2d2ydx2+4xdydx+2y=x2sin(lnx).x2d2ydx2+4xdydx+2y=x2sin(lnx).
4 M
3(c)(i) Solve : 3zx323zx2y=2e2x.3zx323zx2y=2e2x.
3 M
3(c)(ii) Find the general solutiion to the partial differential equation (x2y2z2)+2xyq=2xz.(x2y2z2)+2xyq=2xz.
4 M

4(a) Solve : (D3D)=x3.(D3D)=x3.
3 M
4(b) Find the solution y3y+2y=ex,y′′3y+2y=ex,/ using the method of variation of parameters.
4 M
4(c) Solve xux2yuy=0xux2yuy=0 / using method of separation of variables.
7 M

solve any one question Q.5(a,b,c) &Q6(a,b,c)
5(a) Find the Fourier cosine integral of f(x)=ekx,x>0,k>0f(x)=ekx,x>0,k>0
3 M
5(b) Express \( f(x)=|x|,-\pi / as fouries series.
4 M
5(c) Find Fourier Series for the function f(x) given by {1+2xπ;πx012xπ0xπ/ Hence deduce that 112+132+152+....π28.
7 M

6(a) Obtain the Fourier Series of periodic function function \[f(x)=2x,-1
3 M
6(b) Show that \[
4 M
6(c) Expand f(x) in Fourier series in the interval (0,2π) if \( f(x)\left\{\begin{matrix} -\pi ; &0,/ and hence show that r=01(2r+1)2=π28.
7 M

solve any one question Q.7(a,b,c) &Q8(a,b,c)
7(a) Find L {{\int ^t_0 e^t\frac{\sin t}{t}dt}}
3 M
7(b) Find L1{2s21(s2+1)(s2+4)}
4 M
7(c) Solve initial value problem : y3y+2y=4t+e3t,y(0)=1/ and y'(0)=-1, using Laplace transform.
7 M

8(a) Find L{tsin3tcos2t}.
3 M
8(b) Find L1{e35s2+8s+25}.
4 M
8(c) State the convolution theorem and apply it to evaluate L1{s(s2+az)z}.
7 M



More question papers from Advanced Engineering Mathematics
SPONSORED ADVERTISEMENTS