1(10)
Give the differential equation of the orthogonal trajectory of the family of circles x2+y2=a2.x2+y2=a2.
1 M
1(11)
Find the Wronskian of the two function sin2x and cos2x.
1 M
1(12)
Solve (D2+6D+9)x=0;D=ddt.(D2+6D+9)x=0;D=ddt.
1 M
1(13)
To solve heat equation ∂u∂t=C2∂2u∂x2∂u∂t=C2∂2u∂x2/ how many initial and boundary conditions are required.
1 M
1(14)
From the partial differential equations from z = (x+at) +g(x-at).
1 M
1(2)
State relation between beta and gamma function.
1 M
1(3)
Define Heaviside's unit step function.
1 M
1(4)
Define Laplace transform of f(t),t≥0.
1 M
1(5)
Find Laplace transform of t−12.t−12.
1 M
1(6)
Find L{Sinatt}, given that L{Sintt}=tan−1{1s}.L{Sinatt}, given that L{Sintt}=tan−1{1s}./
1 M
1(7)
Find the continuous extension of the function f(x)=x2+x−2x2−1 to x=1f(x)=x2+x−2x2−1 to x=1
1 M
1(8)
Is the function f(x)=1xf(x)=1x/ continous on [-1, 1]? Give reason.
1 M
1(9)
Solve dydx=e3x−2y+x2e−2y.dydx=e3x−2y+x2e−2y.
1 M
1(a)
Find ⌈(12).(12).
1 M
2(a)
Solve:(x+1)dydx−y=e3x(x+1).(x+1)dydx−y=e3x(x+1).
3 M
2(b)
Solve: dydx+ycosx+siny+ysinx+xcosy+x=0dydx+ycosx+siny+ysinx+xcosy+x=0
4 M
Solve any one question.Q2(c) &Q2(d)
2(c)
Fin the series solution of d2ydx2+xy=0.d2ydx2+xy=0.
7 M
2(d)
Find the general solution of 2x2y″+xy′+(x2−1)y=02x2y′′+xy′+(x2−1)y=0/ by using frobenius method.
7 M
solve any one question Q.3(a,b,c) &Q4(a,b,c)
3(a)
Solve : (D3−3D2+9D−27)y=cos3x.(D3−3D2+9D−27)y=cos3x.
3 M
3(b)
Solve : x2d2ydx2+4xdydx+2y=x2sin(lnx).x2d2ydx2+4xdydx+2y=x2sin(lnx).
4 M
3(c)(i)
Solve : ∂3z∂x3−2∂3z∂x2∂y=2e2x.∂3z∂x3−2∂3z∂x2∂y=2e2x.
3 M
3(c)(ii)
Find the general solutiion to the partial differential equation (x2−y2−z2)+2xyq=2xz.(x2−y2−z2)+2xyq=2xz.
4 M
4(a)
Solve : (D3−D)=x3.(D3−D)=x3.
3 M
4(b)
Find the solution y″−3y′+2y=ex,y′′−3y′+2y=ex,/ using the method of variation of parameters.
4 M
4(c)
Solve x∂u∂x−2y∂u∂y=0x∂u∂x−2y∂u∂y=0 / using method of separation of variables.
7 M
solve any one question Q.5(a,b,c) &Q6(a,b,c)
5(a)
Find the Fourier cosine integral of f(x)=ekx,x>0,k>0f(x)=ekx,x>0,k>0
3 M
5(b)
Express \( f(x)=|x|,-\pi / as fouries series.
4 M
5(c)
Find Fourier Series for the function f(x) given by {1+2xπ;−π≤x≤01−2xπ0≤x≤π/ Hence deduce that 112+132+152+....π28.
7 M
6(a)
Obtain the Fourier Series of periodic function function \[f(x)=2x,-1
3 M
6(b)
Show that \[
4 M
6(c)
Expand f(x) in Fourier series in the interval (0,2π) if \( f(x)\left\{\begin{matrix}
-\pi ; &0,/ and hence show that ∞∑r=01(2r+1)2=π28.
7 M
solve any one question Q.7(a,b,c) &Q8(a,b,c)
7(a)
Find L {{\int ^t_0 e^t\frac{\sin t}{t}dt}}
3 M
7(b)
Find L−1{2s2−1(s2+1)(s2+4)}
4 M
7(c)
Solve initial value problem : y″−3y′+2y=4t+e3t,y(0)=1/ and y'(0)=-1, using Laplace transform.
7 M
8(a)
Find L{tsin3tcos2t}.
3 M
8(b)
Find L−1{e−35s2+8s+25}.
4 M
8(c)
State the convolution theorem and apply it to evaluate L−1{s(s2+az)z}.
7 M
More question papers from Advanced Engineering Mathematics